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André Julius Hovd Olaisen, Yaolin Ge and Jo Eidsvik
Department of Mathematical Sciences, NTNU,

7491 Trondheim, Norway
*Corresponding author: andre.j.h.olaisen@ntnu.no

Abstract

We study opportunities for dynamic sampling designs in spatio-temporal random

field. Considering a situation with a robotic agent, we develop an algorithm that

enables autonomous exploration of spatial domains with large gradients. The mod-

eling assumptions rely on a spatio-temporal Gaussian random field, which means

that the directional derivatives of the field are Gaussian distributed. Using computa-

tional tricks at the dimension of relatively sparse data, the robot updates its on-board

Gaussian random field model in real-time. Moreover, it computes the expected im-

provement in directional derivatives along a set of possible paths in a spider-leg search

space to choose intelligent exploration designs over time stages. We study statistical

properties of this suggested approach in a simulation study, where we compare the

design criterion with several other viable design selection criteria. The new algorithm

is embedded on an autonomous underwater vehicle which is deployed for characteriz-

ing a river plume frontal system in a Norwegian fjord. Using expected improvement

for the salinity field derivatives, the vehicle successfully sampled the river front for

more than two hours without intervention.

Keywords: Expected improvement; Gaussian Random Field; Spatial design; Robotics;

Oceanography
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1. Introduction

Inspired by new sensor technology and small-size computing units, there is cur-

rently a drive to develop intelligent monitoring systems. This development is pushed

by engineers and multi-disciplinary visions on how to put innovative solutions into

practical use. Recent examples include internet-of-things for smart sensor networks

monitoring air pollution (Dhingra et al., 2019), embedded systems and AI for agricul-

ture (Shadrin et al., 2019), robotic systems for understanding environmental processes

(Dunbabin and Marques, 2012) and cyber-physical systems that can re-configure

themselves for ecological monitoring (Schranz et al., 2021).

The capabilities of such embedded systems can clearly be improved by leveraging

knowledge from spatio-temporal statistics and design of experiments, see e.g. Mateu

and Müller (2012), Wang et al. (2012, 2020) or Brus (2022). In doing so, one can

develop more principled approaches for what, where and when to gather additional

data samples, and integrate this new information in a consistent statistical modeling

framework. Even so, solutions to these situations tend to be case-specific, and often of

a heuristic type as the search space is too large to find the optimal solution. Impactful

examples of spatial statistics and design for embedded systems include Krause et al.

(2008) who studied the NP-hard problem of sensor placement using Gaussian random

fields (GRFs) with the goal of finding designs that optimize the mutual information

and Manohar et al. (2018) who suggested using machine learning methods to facilitate

the search for constructive design patterns.

As robotic units and sensor systems often have limited computing, storage and

communication capabilities, one must often simplify the modeling to guide the opti-

mization challenge. Ideas from designing computer experiments and building surro-

gate models (Gramacy, 2020; Fuhg et al., 2021) are hence also highly relevant in this

context of optimal spatio-temporal design and fast integration of data.
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In this article we focus on an application of underwater robotics. An autonomous

underwater vehicle (AUV) with onboard computing units uses a GRF surrogate model

to plan where and when to explore various parts of an ocean domain. The AUV

is hence a dynamic agent that can navigate to extract informative samples in an

uncertain dynamic environment. In particular, the goal here is to find large derivatives

of the field which are indicative of important frontal zones between different water

masses. The spatio-temporal variable that we target here is ocean salinity, and via

the real-world deployment, we show results of an AUV deployment characterizing

salinity changes in a river plume front in a Norwegian fjord.

The main contributions of this paper are

• A spatio-temporal sampling approach with a dynamic agent searching for large

derivatives in the field.

• A fast scalable algorithm for updating and planning based on GRFs and sparse

observation points in the vicinity of the current position.

• A field deployment with an AUV adaptively sampling a river plume front for 2

hours and 10 minutes.

In Section 2, we describe the motivation for our work and define the necessary

notation. In Section 3, we set up the required building blocks from theory on spatio-

temporal GRFs and the properties of their derivatives. In Section 4, we present

the method and algorithm for adaptive sampling of large directional derivatives. In

Section 5, we demonstrate properties of the suggested algorithm in a simulation study.

In Section 6, we show results of the AUV deployment in the Trondheim fjord in

Norway. In Section 7, we provide conclusions and point to future work.
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2. Background and notation

Fronts are important in meteorology and oceanography as they tend to be key

drivers of the physical dynamic behavior, see e.g. Fedorov (1986) and Catto and

Pfahl (2013). Frontal zones in the ocean are further known to be biological hot-spots

that shape parts of the marine ecosystem (Belkin et al., 2009). In this paper, the

spatio-temporal variable of interest is ocean salinity and its derivatives which capture

the frontal zone near river plumes.

Ocean fronts can be detected from satellite data, see e.g. Hopkins et al. (2010), but

this is only on the surface and not available on a cloudy day. Numerical ocean models,

see e.g. Lermusiaux (2006), can mimic fronts at various scales, but even though they

are incredibly useful at predicting ocean variables, they tends to be biased in space

and time. AUVs have become an important tool for oceanographic in-situ sampling,

and they are commonly used to detect frontal zones. These vehicles can navigate

autonomously underwater and can hold a range of sensors such as a standard tool that

provides salinity measurements. Many AUVs also have an onboard computer that

enables for instance data assimilation in a model, and using this to adapt its trajectory

and move in more interesting directions. This is important because communication

is limited under water, and the full benefits of an AUV are gained only when it acts

on its own as an intelligent agent.

To further motivate the detection of fronts in the ocean, we highlight a few exam-

ples. Figure 1 shows three different deployments where researchers aimed to map the

frontal zone between water masses. Zhang et al. (2019) used temperature data from

satellites along with in-situ AUV measurements to follow the zone of mixing cold and

warm water masses in the Monterey Bay, California. Fossum et al. (2021) used an

AUV to understand the frontal zone near the ice shelf in Arctic waters. Fonseca et al.

(2023) compared satellite imagery and AUV samples to map the front of chlorophyll
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Figure 1: Examples of AUV exploration of fronts. a) Zhang et al. (2019) characterizing the Monterey
Bay front between water masses using temperature information processed from satellites and that
gathered by an AUV. b) Fossum et al. (2021) conducting frontal AUV sampling in water masses in
the Arctic. c) Fonseca et al. (2023) showing an AUV path zig-zagging the chlorophyll front in the
Baltic sea as extracted from satellite data.

in the Baltic sea. These studies attempt to find the gradient or derivative in the

ocean variable of interest. In doing so, the AUV reacts to data, but none of them

use spatio-temporal statistical models or approaches from spatial design, which would

likely have improved the mapping performance.

We next define the notation used in our statistical model and sampling design

approach. Let s = (se, sn, sd, t) be a point in space and time. Here, se, sn and sd

represent east, north and depth coordinates, respectively, while t > 0 is a temporal

index. A spatial operational domain is defined so that (se, sn, sd) ∈ D ⊂ R3. The

spatio-temporal variable of interest is denoted x(s) ∈ R. In our application this is

ocean salinity.

In this paper, we are primarily interested in detecting large derivatives or changes

in this spatio-temporal variable in the lateral plane close to the sea surface. In our

application this would indicate ocean front zones. We define the directional difference
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from location s to s′ by

g(s, s′) =
x(s′)− x(s)

d(s, s′)
, (1)

where d(s, s′) is the Euclidean distance between the two locations. Letting this dis-

tance go to 0, we obtain the field derivative at s in the direction towards s′. In

practice, we instead consider the distance d(s, s′) as a tuning parameter that can be

specified in the context of the application and the operational constraints.

An observation made at space-time location s is denoted y(s). Because of sensor

noise and positioning error, this observation does not carry perfect information about

the salinity. Observations from a set of sampling points S = {s1, . . . , sN} are denoted

by y(S) = (y(s1), y(s2), ..., y(sN)). AUV data are gathered sequentially. At stage k,

the AUV gathers a batch of data size Nk, and we denote batch sampling locations

by Sk = {s(k)1 , . . . , s
(k)
Nk
} with associated data yk = {y(s(k)1 ), . . . , y(s

(k)
Nk
)}. This means

that we at stage k have measured at N1:k =
∑k

l=1Nl points. We denote the set of

sampling locations by

S1:k = {S1,S2, . . . ,Sk−1,Sk}, k = 1, 2, . . . , (2)

with associated salinity measurements

y(S1:k) = y1:k =
(
y1,y2, . . . ,yk−1,yk

)
, k = 1, 2, . . . . (3)

At each stage k, the agent computes expected rewards for staying on the same

trajectory and for changing its path to another direction. Higher rewards are attained

for design directions that have large expected derivatives. Design paths form transects

consisting of M j
k new locations in a set Pj

k = {pj
k,l; j = 1, . . . , J, l = 1, . . . ,M j

k} with

single locations pj
k,l ∈ D. For the number of directions J , we use a spider-leg formation

in the lateral domain. The number of transect points M j
k is fixed at all stages and

for all designs, except at boundary locations. The spacing between single locations

along each design direction is also fixed, and it is determined by the agent´s speed
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and sampling frequency. In doing so, measurements and plan evaluations are easily

comparable.

Figure 2 shows the situation with an agent path consisting of 5 stages. At the

current location (blue circle), it makes a decision about where to go next for stage 6.

The agent is not constrained to travel the entire segment of length Mj. Instead, it

AUV start 
location

Current
location

AUV 
trajectory

Potential
AUV paths

Horizon

Step
length,
selected
path

Figure 2: Illustration of an AUV trajectory made up of segments over 5 earlier stages. At the current
location, the AUV will choose one of the 7 possible designs. The design selection criteria is expected
improvement (EI) for the salinity derivative.

conducts new design evaluations after moving one step-length down the best segment.

In this illustration, design 6 is selected and the agent moves a step-length in this

direction (marked by a star).

In summary, bringing the model and design choices back to the context of AUV

sampling, we assume that:

• The AUV moves significantly faster than the ocean phenomenon develops over

time, and this means that the AUV is able to detect changes in space. Hence

we focus on differences in space, and not time.
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• Salinity changes are often most difficult to characterize in the lateral domain,

so without loss of generality, we focus on differences in the east, north plane,

assuming the AUV is at a fixed depth (set to 1 meter in the field deployment).

• The AUV is able to maintain a nearly constant velocity. Because the sensors

are sampling at a constant frequency, the relatively close locations s and s′ are

at the same distance during the operation.

Note that the suggested approach does not rely on the usual concepts of a prede-

fined waypoint graph or grid for the path-planning. Instead, data points and variables

are allocated to continuous space-time locations, and this occurs when the design cri-

terion is computed according to a spider leg design. Hence, the discretization occurs

only along transect lines, and it is formed during the mission, not before the deploy-

ment starts. One benefit of this approach is that the AUV maintains a model with

relatively few points compared to a waypoint graph, but we can still have a high level

of detail close to where we sample. In practice, one might miss the phenomenon by

placing a strict waypoint graph onboard the AUV model. Here, the AUV is more free

to follow where it is most interesting to sample.

3. Spatio-temporal Gaussian random fields

The agent has an onboard spatio-temporal model which is updated with the data

that is gathered. The model is also used to compute the expected rewards along

potential design trajectory and decisions for adaptive sampling. For ease of data as-

similation and real-time decision-making, a GRF is used onboard the agent. Notably,

derivatives or differences are then also Gaussian distributed.

3.1. Gaussian random fields

A GRF is fully described by its mean µ(s) = E[x(s)], s ∈ D×R+ and a covariance

function C(s, s′) = Cov (x(s), x(s′)), see e.g. Cressie and Wikle (2015). In our case
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study, the mean function is specified from physical oceanography modeling for the

domain of interest, which involves a spatio-temporally varying function in the initial

(prior) mean. The covariance function is specified from multiple ocean models as

well as previously acquired data from the domain of interest. For the space-time

covariance, we assume a separable model so that

C(s, s′) = σ2 exp

(
−
(
d(s, s′)

ϕs

)2
)
exp

(
−
(
|t1 − t2|

ϕt

)2
)
, (4)

and as we limit scope to a fixed operational depth, we do not incorporate any kind

spatial anisotropy which would be relevant to enhance smaller correlation in depth

than in the lateral domain.

For any set of N space-time locations S = {s1, s2, . . . , sN}, the random vector

xS = (x(s1), x(s2), . . . , x(sN)) is then Gaussian distributed with mean vector

µS = (µ(s1), µ(s2), . . . , µ(sN)), (5)

and a symmetric positive semi-definite covariance matrix

ΣS =


C(s1, s1) C(s1, s2) . . . C(s1, sN)

C(s2, s1) C(s2, s2) C(s2, sN)
...

. . .

C(sN , s1) C(sN , s2) C(sN , sN)

 . (6)

In short notation, we write this as

xS ∼ N (µS ,ΣS). (7)

3.2. Directional differences and GRFs

Because g(s, s) in Equation (1) is a linear combination of two Gaussian distributed

variables, and hence g(s, s) is also Gaussian. In particular, we have mean

E[g(s, s′)] =
µ(s′)− µ(s)

d(s, s′)
, (8)
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and variance

Var (g(s, s′)) =
1

d(s, s′)2
(Var(x(s)) + Var(x(s′))− 2Cov(x(s), x(s′)))

=
1

d(s, s′)2
(C(s, s) + C(s′, s′)− 2C(s, s′)) . (9)

In doing so, one can further take the difference between any pairs of variables

along a transect line in the spatial domain. Then the random vector of directional

differences is multivariate Gaussian distributed.

When studying properties of such derivatives we can see one of the main benefits of

using a Gaussian covariance function. Figure 3 shows three different 1D GRF realiza-

tions, one using a Gaussian covariance function, one using an exponential covariance

function and one using a Matérn covariance function. For each of the covariance func-

tions the correlation at 300 is 0.05. The realization using the Gaussian covariance

function is the smoothest out of the three, and the gradients are also smooth. For the

exponential the derivatives are extremely large. This means that one should impose

a smooth correlation function when the goal is to search for hot-spots in gradients.

Hence, even though we regard more complicated spatial or spatio-temporal correla-

tion functions as promising models, such as the one with spatially varying anisotropy

by Berild and Fuglstad (2023) or the advection-diffusion model of Foss et al. (2022)

that have been applied to coastal domain ocean modeling, we did not pursue complex

covariance models here.

3.3. Conditioning to in-situ observations

As the agent gathers data, it will update the on-board model. In doing so, it

needs a model for the data. The measurement model is here defined via

y(s) = x(s) + ϵ(s) ϵ(s) ∼ N (0, τ 2), (10)

where the errors at different locations are assumed to be independent. The Gaussian

assumption for the error terms crucially means that measurements are jointly Gaus-
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Figure 3: One realization using Gaussian, Matérn (smoothness ν = 3/2) and exponential covariance
function. The Gaussian covariance function gives a much smoother realization and gradient. The
plotting scale for the gradients is truncated because the gradients for the exponential become ex-
tremely large.

sian distributed. Hence, given observations y1:k in Equation (3), we can compute the

conditional model using properties of the Gaussian distribution.

For any location set P ∈ Pj
k+1 among all possible design sets at stage k + 1,

we denote the associated variable xP . Given the currently available data, the mean

vector and covariance matrix are computed as follows:

mP = µP +ΣP,S1:k
(ΣS1:k

+ T S1:k
)−1(yS1:k

− µS1:k
), (11)

ΨP = ΣP −ΣP,S1:k
(ΣS1:k

+ T S1:k
)−1ΣT

P,S1:k
, (12)

where T S1:k
= τ 2IN1:k

is the measurement noise covariance matrix and ΣP,S1:k
is the

cross-covariance between variables at locations P and those variables at former data
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locations S1:k.

In particular, at any two points s and s′, the variable (x(s), x(s′)) has a joint

bivariate Gaussian distribution conditional on the observations y1:k. Their scaled

difference is then Gaussian distributed, similar to what we have in Equation (8)-(9),

and the same holds for variables along a transect.

3.4. Efficient matrix calculations

Matrix inversion or factorization can take a considerable amount of time when the

number of data increases. Say, in Equation (11) and (12), one must invert the matrix

ΣS1:k
+T S1:k

of dimension N1:k×N1:k, which is of order O(N3
1:k) calculations, and could

quickly stall the agents´s computing performance. We utilize the structure with batch

data collection, and then rely on a block version of the Sherman-Woodbury-Morrison

formula for efficient matrix factorization (Petersen et al., 2008). In particular, we

have that  ΣS1:k
+ T 1:k ΣS1:k,P

ΣP,S1:k
ΣP

−1

=

 B −AΣS1:k,PC

−CΣP,S1:k
A C−1

 , (13)

where A = [ΣS1:k
+ T 1:k]

−1 is assumed to be available from the previous stage, and

B = A+AΣS1:k,PC
−1ΣP,S1:k

A, C = ΣP −ΣP,S1:k
AΣS1:k,P .

This calculation is used both to evaluate many designs {Pj
k+1}j=1,2,...,J and to update

the mean and covariance in the data assimilation step. The required inversion is for C

is of moderate size as it only involves the variables at the new batch or the potential

transect locations.

This trick in Equation (13) allows efficient computing onboard an agent. However,

over time the mere size of the covariance matrix leads to evaluation challenges. To

approach this challenge further, we implement an on-board algorithm that reduces

the data size over space-time by thinning data from far away/long ago. The agent
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needs to make a decision in a reasonable amount of time, therefore we set a threshold

time for how long the data assimilation and prediction stage should take. If the total

time is larger than this threshold time then we thin the data points in memory. This

will remove half the points in memory. The points that are thinned are mostly points

that are far away in time because these points have a low correlation with the points

we want to predict. After the thinning the inverse must be re-computed without

using the recursive formula in Equation (13), but with the reduced number of data

points this will take a shorter time than the threshold time.

4. Adaptive sampling design

For adaptive selection of designs as illustrated by the spider leg design in Figure

2, this shows the agent at some stage k deciding to take one of 7 possible paths. In

order to decide what path to take one needs to have an objective function. The agent

will then make an optimal decision (direction) from the highest expected reward. We

outline expected improvement (EI) in directional differences as our reward function.

The onboard algorithm is summarized with the GRF and EI calculations, and involves

some tuning parameters that we have tailored for the application.

4.1. Expected improvement for spider legs transects

The spider leg designs shown in Figure 2 illustrate potential sampling designs

for the agent at the current stage. For each of these transects, we calculate the

conditional distribution, and base the path selection on the optimal expected reward.

The expectation for a particular set of design points P is based on the conditional

mean and covariance in Equation (11)-(12). In addition, we are mainly interested in

the directional differences, see Equation (8)-(9).

Let gmax denote the largest absolute directional difference observed thus far in

the sampling. We first study the probability of finding a larger directional gradient

than this gmax along a transect. This probability of improvement (PoI) is chance of
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having a difference that is larger than gmax. Note that the maximum difference is in

the observations and not in the true field. Nevertheless, we compare designs in the

variables of interest because it is comparable between the different design transects at

this stage. For a transect path P = {p1,p2, . . .pn}, two-neigbour locations define the

difference. The difference is Gaussian distributed as in Equation (8)-(9). To simplify

the notation, we let the conditional distribution of the difference gi = g(pi,pi+1) ∼

N (ζi, η
2
i ), given the available data y1:k. Then the probability that |g(pi,pi+1)| is

larger that gmax is

PoI = P (|g(pi,pi+1)| ≥ gmax) = 1− Φ

(
gmax − ζi

ηi

)
+ Φ

(
−gmax − ζi

ηi

)
. (14)

Now we compute this for all two-neighbor locations along a transect and compare

the different transects to create a decision rule for which direction the agent should

choose. The best transect according to the largest PoI is

Best directionProb = argmax
j∈{1,2,...,J}

max
pi∈P

j
k

P (|g(pi,pi+1)| ≥ gmax). (15)

Note that even if gmax is the highest derivative in the field the PoI still gives a value

larger than zero along each transect provided that the variance is larger than zero.

An alternative approach that accounts for the expected gain in the difference is

available via the EI which has been used much in for instance the design of complex

optimization problems (Zhan and Xing, 2020). The EI has a closed form solution for

Gaussian distributions, see e.g. Gramacy and Apley (2015). Let

I(gi) = max(|gi| − gmax, 0), (16)

then the expected value of this improvement becomes

E[I(gi)] = (ζi − gmax)

(
1− Φ

(
gmax − ζi

ηi

))
+ ηiϕ

(
gmax − ζi

ηi

)
+ (−ζi − gmax)Φ

(
−gmax − ζi

ηi

)
+ ηiϕ

(
−gmax − ζi

ηi

)
. (17)
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Now we compute the EI for all two-neighbor locations along a transect and com-

pare the different transects to create a decision rule for which direction the agent

should choose. The best transect according to the largest EI is then

Best directionEI = argmax
j∈{1,2,...,J}

max
pi∈P

j
k

E(I(gi)). (18)

Later in Section 5 we will compare PoI against EI in a simulation study.

4.2. Algorithm

Along with the statistical model and the objective functions some other details

are needed to fully describe the algorithm. The algorithm works in a sequential loop;

sampling data, data assimilation, predicting gradients along possible paths and then

use the objective function to choose one of these paths. The algorithm using EI is

shown in Algorithm 1. When the AUV arrives at a waypoint (WP) it first assimilates

the new data into the model (Section 3), then it finds 7 possible new paths it can

take as defined by the spider-web legs. For each of these paths it predicts the salinity

changes for several points along this path. It uses this prediction and EI (described

in Section 4) to choose which transect is the best. The last step is to move along

this transect, and it samples salinity data with a frequency of 1 Hz. The AUV does

not move all the way until the end of the predicted transect, rather it uses a longer

horizon and then it moves a shorter step-length. This is illustrated by the star in

Figure 2. The reason for predicting far into the future and only moving a short path is

that we can react quickly to the new measurements while still looking for derivatives

far away.

Figure 4 illustrates some parts of the algorithm from the simulation study. In

the figure the AUV has sampled for 20 steps and is making a decision on where to

move next. There are 8 candidate transects for the AUV to move in. The next WP

is set back towards the where the salinity change is large. Along the observed path
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the conditional mean is closer to the true field. The conditional mean for the whole

field is not computed during the mission, but here it is included only for illustration.

The algorithm does require that we choose a step-length, horizon and a number of

transects that fit the application.

Algorithm 1 shows the main steps in the sequential procedure. The AUV is guided

by setting target waypoints (WPk) for stage k.

Algorithm 1 Sampling for derivatives.

Require:
µ(s), C(s, s′), operational domain D.
S0 = ∅, y0 = ∅, gmax = 0, WP0 = sstart.
repeat For each time k = 1, . . .:

Define spider legs Pj
k for j = 1, . . . , J transects.

Define WPk−1 = WPk and EImax = 0
repeat For each spider-leg Pj

k, j = 1, . . . , J
Predict mPj

k
and ΨPj

k
from S1:k−1 and y1:k−1 ▷ Eq. (11)-(12).

Compute EIjk = maxpi∈P
j
k
E[I(gi)] ▷ Eq. (17).

if EIj > EImax then
EImax = EIjk
Set WPk one step-length down Pj

k

end if
until
AUV moves from WPk−1 to WPk, and it gathers data values yk at points Sk

Update y1:k = (y1:k−1,yk) and S1:k = {S1:k−1,Sk}
Update maximum derivative gmax = max(gmax, gk)
if Update time > max update time then

Points in memory are thinned.
end if

until

5. Simulation study

Before deploying the AUV in the ocean we want to test different strategies in a

simulated case. Here we generate a replicate study where we know the true salinity

field. In this section we will go over the setup of the simulation study, the different
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Figure 4: Illustration of spider leg designs over; (a) one realization of the true salinity field, (b) the
conditional mean salinity field and (c) the prior mean field. All three plots show the observed path
of the AUV in black. The conditional mean changes compared with the prior mean close to the
observed path, and becomes closer to the true field. The conditional mean for the full field is only
included for illustration here. The possible paths are shown in dark green and the best path in light
green. The next waypoint is played one step-length down the best path.

metrics used for evaluating the different strategies, and the conclusions that become

recommendations for the real-world setup.

5.1. Simulation setup

For the simulation study we use a setup with a square 2D field as shown in Figure

4, the field is of size 1km×1km. For the simulation we need to have a true-field and

a prior mean, both fields are static. The prior should capture some characteristics of

the true field, but will not be completely accurate. For all the tests we will run 100

replicates, where each replicate gives a unique realization of the true field.

The starting location for the AUV is different for each replicate and will always

be several step-lengths away from the interesting high gradient regions. The speed of

the AUV is set to be 1 m/s with a sampling frequency of 1 Hz. For all experiments

the AUV will run for a total of 5000 m. The step-length for the AUV is set to be 100

m, and the horizon is 500 m.

5.2. Evaluation metrics

The evaluation metrics look at how large the largest gradient observed is and how

many important regions the AUV is able to visit.
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One way to check if one strategy is better than another is to see the absolute

gradient gmax measured after sampling for a time t. Ideally we would want the gmax

to be as large as possible for each stage k. We will use this to ascertain how well a

strategy is performing. We can define gmax(t) as

gmax(t) = max
ti<t

|g(si, si−1)|. (19)

This metric will be a good indicator of whether we have found some large gradient

during the mission. But the metric will not tell us how well the AUV is able to explore

gradients in different regions of the field. For this purpose we need another evaluation

metric. The AUV should be able to explore several regions where the gradient is high.

We refer to these regions containing large gradients by important regions. One aims to

visit many important regions during the mission. We split the region D into N = 400

equal regions, and then we look at the 20 % regions with the largest absolute gradients.

In Figure 5 we illustrate the important regions (marked with red in the right plot) for

Figure 5: One realization showing absolute gradient (left plot) and the corresponding important
regions (right plot). The corresponding regions are the 20 % regions with the highest gradients.

one replicate realization of the field. These important regions are different for each
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replicate, but remain static for the whole simulation time. It is considered better if

the AUV visits more of these regions. Hence, we construct a performance measure

by counting how many of these regions the AUV visits on its exploration of the field.

We count this over distance traveled (which is proportional to time).

5.3. Simulations results

We have proposed two different objective functions that can be used in looking for

large gradients; PoI (14) and EI (17). In addition to these, we compare performance

with 3 other strategies; one goes in the direction with the largest expected gradient,

one goes to the largest variance in the derivatives and the last is a random walk. All

strategies use the same algorithm as described in Algorithm 1 with the statistical

model described in Section 3, the only difference is that the objective function is

swapped.

The results for running simulations with these 5 different objective functions using

a step-length of 100 m and a horizon of 500 m are shown in Figure 6. We first study

the AUV’s ability to detect large directional derivatives. In Figure 6 Left) we show

the maximum derivative discovered by each of the five criteria over time. The thick

line is the mean over the 100 replicates while the shaded region represents 2 standard

errors in this mean. We clearly see that the PoI and EI work better than just looking

for the max gradient, the reason for this is that it might get stuck in a local maxima,

and it will not move away. This plot shows that EI does the best out of the five

objective functions, although the gap between PoI and EI closes towards the end of

the simulation. The random strategy and the one going for largest variance in the

field are not performing so well, compared with the others.

In Figure 6 right) we observe how many important regions the AUV has visited

after running a given distance. The thick lines indicate the mean number of regions

visited for a given distance, and the shaded region represents 2 standard errors in
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this mean. The ranking of the different objective functions is the same as in the

left plot. The relative performances can be viewed a bit differently. Just looking

for the maximum gradients does not really explore the field all that well. Rather, it

can get stuck in local minima. Focusing on the maximum variance in the gradients,

will eventually sample in the important regions, but it spends too much time in the

exploration. Lastly, the gap between PoI and EI does not close down towards the end

here. From this test, the conclusion is that EI works best overall.
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Figure 6: Compare the performance of different objective functions with 100 realizations for each.
(a) increase in mean gmax and (b) increase in important regions visited. Both (a) and (b) show that
expected improvement works best, with probability of improvement following.

To inspect further we take a look at worst-case and best-case outcomes of the

simulations to see how they differ for the different objective functions. This can be

important because it can be difficult to conduct many experiments in the ocean.

Table 1 shows the 5th, 50th and 95th percentiles for the two metrics at the end of

the simulation. For the 95th and 50th percentile both EI and PoI have a similar

performance, but for the 5th percentile the difference is large. In the 5th percentile
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EI is able to sample in 39 (out of 80) important regions, while PoI is only able to

sample in 19. This means that EI is much better at exploring the important parts of

the field in the worst cases.

gmax Important Regions

Objective function 5 % 50% 95 % 5 % 50% 95 %

EI 1.52 1.81 2.13 39 47 56
PoI 1.49 1.83 2.18 19 45 55

Max Gradient 0.61 1.78 2.15 0 33 47
Max Variance 0.87 1.50 1.94 2 14.5 31

Random 0.61 0.81 1.54 0 1.0 13

Table 1: Percentile table for the different objective functions with the two different evaluation
metrics. These percentiles are calculated at the end of the simulations.

Regarding algorithmic parameter tuning we conducted some other tests to eval-

uate other aspects of the algorithm. One thing to test was how the horizon affected

the performance, not surprisingly the longer the horizon the better. The main reason

to limit the horizon is the computational cost for each iteration. It was also impor-

tant that the step length was not too long as the AUV tends to be overstepping the

phenomena in that case. It must travel the long way back, and this wastes time.

6. Case study

The suggested algorithm was tested in the Trondheim fjord on June 22. 2023. The

AUV ran the adaptive mission for 2 hrs 10 min starting at 11:00 am. We first describe

the parameter specification in the spatio-temporal model using numerical ocean data.

We then describe the AUV setup and finally show results of the deployment.

6.1. Prior model specification based on SINMOD

We have access to a numerical ocean model for the fjord called SINMOD developed

by SINTEF Ocean (Slagstad and McClimans, 2005). In out case the model simulates
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Figure 7: SINMOD simulation for the surface level of the river plume in the Trondheim fjord. Left
plot shows the salinity level and the right shows the absolute salinity gradient. Left plot shows that
the river has 4 outlets. The right plot shows clear river fronts in dark red. The tide is going from
high tide to low tide.

several features of the fjord like currents, temperature, and salinity, but we are mostly

interested in the salinity and the spatial salinity changes. Figure 7 shows a snapshot

from a simulation, the left plot shows the salinity level and the right plot shows the

absolute gradient. At this time in the simulation the water level goes from high tide

to low tide1 The dark red regions in the right plot show the river front. This is the

region that is most interesting to sample.

These SINMOD simulations are computationally heavy to run. Therefore we use

simulations done some time before the mission. We can use the outcome of the

simulation as the prior mean for the surrogate GRF model of the salinity field.

The spatial and temporal covariance parameters ϕt and ϕs, and the sill σ in Equa-

tion (4) are estimated from a variogram analysis of SINMOD data. The parameters

are ϕt = 5400s, ϕs = 530m and σ = 2. The measurement noise for the salinity sensor

is estimated from previous AUV deployments in the same location. The variance for

1Tide data gathered from https://www.kartverket.no/
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the difference between two measurements is

Var[y(si)− y(si−1)] = Var[x(si)− x(si−1)] + Var[ϵ(si)− ϵ(si−1)].

The salinity sensor has a frequency of 1 Hz and the AUV maintains a speed of

1.6 m/s, therefore two consecutive measurements are done within 1.6m and 1s of

each-other. Large depth changes are also filtered out, because that salinity change

in depth is much larger. Then we assume that Cov(x(si), x(si−1)) ≈ σ2, therefore

Var[x(si)− x(si−1)] ≈ 0. Then

Var[y(si)− y(si−1)] ≈ Var[ϵ(si)− ϵ(si−1)] = 2τ 2. (20)

We can also get that E[y(si)− y(si−1)] ≈ 0 for such close measurements. This means

that we can estimate τ by using

τ̂ 2 =
1

2(n− 1)

n−1∑
i=1

(y(si)− y(si−1))
2 . (21)

We get τ = 0.27.

The algorithm contains other tuning parameters, the step-length to be 250 m, and

the prediction horizon to be 1000 m. The AUV will evaluate at most 7 transects, and

the maximum planning time is set at 5 s. The target depth layer for the deployment

is set at 1 m.

6.2. AUV Setup

In this field experiment, a Light Autonomous Underwater Vehicle (LAUV) from

NTNU’s Applied Underwater Robotics Laboratory (AURLab) was employed. Pre-

launch protocol consisted of standard remote control verification (Figure 8).

The primary computational unit of the LAUV is the NVIDIA Jetson TX2. The

vehicle’s onboard algorithmic capabilities are augmented through the integration of

an adaptive sampling framework (Mo-Bjørkelund et al., 2020), which mediates mes-

sage exchange between the Robot Operating Systems (ROS) (Quigley, 2009) and
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Figure 8: The AUV named Thor is heading towards the river mouth area where potential high
gradient might exist.

DUNE (DUNE: Unified Navigation Environment(Pinto et al., 2013)). Communica-

tion among the vehicle’s components utilizes the Inter-Module Communication (IMC)

protocol (LSTS, 2022). The integration follows the scheme outlined in Ge et al.

(2023), providing additional insights into the ROS-IMC bridge.

The AUV maneuvered at a depth of 1 m, where the salinity variance is large.

Also, the AUV is less prone to colliding with small boats when keeping this depth,

so it induces less risk. The AUV is programmed to try to maintain a speed of 1.6

m/s, which is much faster than the dynamics of the plume phenomenon observed

in the SINMOD results. It was configured to re-surface at 10-minute intervals for

navigational adjustments.

6.3. Results

The trajectory made by the AUV is shown in Figure 9. The left plot shows

the measured salinity along the path, the middle plot shows the absolute directional
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(a) (b) (c)

Figure 9: (a) Observed salinity along the AUV trajectory. (b) The observed absolute gradient along
the trajectory. (c) The mission accomplished in time steps. The AUV takes 39 steps, each step is
around 250m.

derivatives, and the right plot shows where the AUV is at any point in the mission.

We notice that the AUV spends most of the time close to the river outlet, this is

where the salinity change is expected to be the largest. The AUV measures the

largest salinity changes in the south-west region of the map, this is around mid-way

through the mission.

How the maximum gradient changes over time is shown in Figure 10. This display

shows the increase in gmax, the observed absolute gradient and the predicted absolute

gradients. There are four distinct increases in the gmax, in the start, 0.2 hours, 0.75

hours and 1.1 hours into the mission. At around 1 hour to 1.5 hours into the mission

the AUV samples a region with a lot of salinity change, this is where the largest

gradient is found. After this the AUV does not measure any very large salinity

gradients. It is also interesting to look at what gradients the AUV predicts during

the mission. The figure shows that when the AUV observes a large gradient, it also

predicted a large gradient, however the prediction is often much larger. There are

also some points where the model predicts a large gradient, but no large gradient is

observed. This means that the model does perform one of the most important tasks

which is to guide the agent towards large salinity changes
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Figure 10: Increase in maximum derivative for the duration of the mission. The display also shows
the measured absolute derivative during the mission and the predicted derivative.

During the mission the AUV takes 39 steps. In Figure 11 the value for the EI for

each of the transects for a given step. The EI usually starts out with large values while

the as gmax is low, this can be seen in step 4. Towards the end the EI drops closer

to zero, the AUV will start to explore different regions where it does not necessarily

predict that the gradient will be large, but rather that the variance is large.

We next study how predictions for the gradients correlate with the measured

gradients. For each step k we predict the salinity distribution along the path Pk, but

because of currents and other navigational errors the points we measure Sk will not

be exactly the same, and it can be a large difference. We use the model estimated

in step k − 1 to predict the points Sk that will be measured in step k. Then we look

at how well the model can predict the next transect, these contain 160 - 300 data

points. The results from this are shown in Figure 12. There is a correlation between

the predicted gradient and the observed gradient. Ideally we would like the values to
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Figure 11: Expected improvement for each step of the mission. The red line represents the highest
expected improvement, and this will be the direction the AUV moves in. The blue dots are the
expected improvement values for the other possible directions.

lay along the 1:1 line, but the model tends to predict larger gradients than what is

observed. This might be because the variance in the salinity for the prior model is

larger than what is observed, leading the model to predict larger gradients.

In summary, the AUV was able to sample and measure salinity changes in the river

plume. EI worked rather well at finding large gradients and for exploring different

parts of the river plume. The onboard model gives a reasonable prediction for the

gradients that are going to be observed, but the gradients predicted by the model are

larger than what is observed.

7. Closing remarks

We have presented an approach for constructing sampling designs by an agent

moving in a spatio-temporal domain. The goal is to provide valuable designs, which

in our case involves locating regions that exhibit large spatial changes. For our ap-

plication in oceanography, such locations could indicate transitional zones in water

masses which are potentially indicative of much biological activity. The approach for

adaptive sampling is based on a Gaussian random field model, and the directional
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Figure 12: Correlation between the predicted and observed salinity gradients. There is a correlation
between the predicted and the observed gradients, but the model predicts larger gradients than what
is observed.

changes in the field are then also Gaussian distributed. By using a Gaussian model,

one facilitates efficient calculations on the agent’s limited computing resources. With

the sampling design setting of a moving agent, we suggest a spider leg design at each

stage of the adaptive operation, and we use expected improvement in directional dif-

ferences to guide the adaptive sampling. There is hence no operational grid such as

a waypoint graph. Instead, the prior model assumption is effectively updated with

data at each stage, limited only by the size of the data vector. In long-term opera-

tions, storage problems can occur, and we suggest to fade distant data (in space and

time). This allows long-time operations in large spatial domains. We demonstrate

the merits of the approach in a simulation study and in a field deployment running

an autonomous underwater vehicle in a Norwegian fjord.
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The field of robotics and embedded computing is growing quickly with the tech-

nological advances in small-size computing units and the current societal focus on

AI. Statistics should play a substantial role in the development of new algorithms

in this field. We have shown one example of added value in using spatial statistics

and spatial design for underwater robotics. There are plenty of other applications

where statistics can contribute. In our experience working on this, the engineers see

much merit in more formalized statistical methodologies. They are however striving

for efficiency and real-time operation, so rather than overly complex statistical mod-

els or methods, there seems to be a need for fast and robust systems that still have

reasonably good statistical properties.

For future work, we want to investigate more nuanced algorithms where one can

tune the distance and design parameters to automatically capture the right scales on

the fly. We also aim to look at multivariate fields which requires a re-formulation of the

derivatives used here. Rather than just derivatives, one is often interested in volumes

(spatial integrals). In oceanographic applications volumes of relevance include high

biomass, oxygen production, net primary production, etc., see e.g. Wu et al. (2022).

Integral expressions are linear operators and it is hence Gaussian distributed if the

variable of interest is Gaussian. Many of the methods described in this paper can

hence be used for such applications. We used a relatively standard spatio-temporal

model here. It can be extended to more complex temporal dynamics as well as non-

stationary spatial elements. Staying within the Gaussian model class, we can for

instance build on advection-diffusion processes (Sigrist et al., 2015; Foss et al., 2022)

or use links to stochastic partial differential equations in the spatial domain (Berild

and Fuglstad, 2023).
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