#Reading NetCDF-files library(ncdf4) library(ggplot2) library(reshape2) #setwd("Dropbox/karine/fraGunhild/OneDrive_4_2-8-2019/") ncname <- "INDORSE-Franfjorden-Scenario1_modified-2018.10.10_concentration.nc" my_data <- nc_open("INDORSE-Franfjorden-Scenario1_modified-2018.10.09_concentration.nc") # Printer info om datasettet. Alle variabler og dimensjoner. print(my_data) # Henter ut variabler. total_concentration <- ncvar_get(my_data, "total_concentration") # [lon, lat, depth, time] lat <- ncvar_get(my_data, "latitude") lon <- ncvar_get(my_data, "longitude") depth <- ncvar_get(my_data, "depth") time <- ncvar_get(my_data, "time") #Just some bit of the area: relevant_lon_pos = which(lon>7.11 & lon<7.13) relevant_lat_pos = which(lat<62.85 & lat>62.84) rel_lon = lon[relevant_lon_pos] rel_lat = lat[relevant_lat_pos] #Making one large vector for plotting lonVec = rep(rel_lon, length(rel_lat)) latVec = rep(rel_lat, each = length(rel_lon)) #If we want the whole area: relevant_lon_pos = 1:length(lon) relevant_lat_pos = 1:length(lat) #Making one large vector for plotting lonVec = rep(relevant_lon_pos, length(relevant_lat_pos)) latVec = rep(relevant_lat_pos, each = length(relevant_lon_pos)) ################################################ #Testing for one (high tide) time and one depth: #total_concentration[longitude, latitude, depth, time] snapshot = total_concentration[relevant_lon_pos,relevant_lat_pos,which(depth==15),211] consVec = melt(snapshot, value.name = 'cons') ggplot(data.frame(consVec), aes(x=lonVec, y=latVec))+ geom_raster(aes(fill = cons)) + scale_fill_gradientn(colors =c('blue4','red'))+ ggtitle("") + theme(plot.title = element_text(hjust = 0.5)) # Gj??r om til fornuftig tidspunkt. Origin blir hentet fra my_data$dim$time$units. date = as.POSIXct(time,origin = "2018-10-07",tz = "GMT")