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1 Introduction

The Gaussian distribution is tremendously popular because of its theoret-
ical properties and the attractive computational features in multivariable
settings. In the following we first present background material on the mul-
tivariate Gaussian distribution, and next apply these to describe stationary
Gaussian processes and Brownian motion in the time domain.

There are numerous textbooks covering Brownian motion and continu-
ous time and state models from the mathematical point of view, see e.g.
Øksendal (2003). Others cover the more practical modeling aspects of Gaus-
sian processes, see e.g. Rasmussen and Williams (2006). There are also lots
of online web resources such as GPstuff (Vanhatalo et al., 2013)
(http://research.cs.aalto.fi/pml/software/gpstuff/).

2 Background on the Gaussian distribution

This section provides some definitions and properties of the Gaussian dis-
tribution. Consult e.g. Johnson et al. (2014) for more detailed statistical
discussions. Proofs of properties would rely on transformation of variables
or the use of moment generating functions.

2.1 Univariate case

For a random variable x, with mean E(x) = µ and variance Var(x) = σ2,
the univariate Gaussian probability density function (pdf) is defined by

p(x) =
1√
2πσ

exp

(
−1

2

(x− µ)2

σ2

)
, x ∈ R. (1)

For short, this is often denoted p(x) = N(µ, σ2).
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Figure 1: Illustration of a univariate Gaussian pdf with mean µ = 0 and
variance σ2 = 12. The vertical dashed lines at ±1.64 indicate the 0.9 centered
prediction interval for the random variable x.

By a transformation of variable z = (x− µ)/σ, with inverse x = µ+ σz,
and derivative (Jacobian) Jz =

∣∣dx
dz

∣∣ = σ, we get the standard Gaussian pdf
with zero-mean and unit-variance:

p(z) = |Jz|p(x(z)) =
1√
2π

exp

(
−z

2

2

)
. (2)

Figure 1 illustrates this standard Gaussian pdf.

2.2 Definition of the multivariate case

The multivariate Gaussian pdf for a random variable x = (x1, . . . , xn), viewed
as an n× 1 vector, with model parameters µ and Σ is

p(x) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ)′Σ−1(x− µ)

)
, x ∈ Rn. (3)

This multivariate Gaussian pdf is a direct extension of the univariate pdf in
equation (1), and it is recognized by the quadratic form in the exponent. For
short, this pdf is often denoted p(x) = N(µ,Σ).
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Figure 2: Contour plots illustration of Gaussian pdfs. In both displays the
means are 0 and the variances 1. Left: Correlation is 0.9. Right: Independent
variables.

The size n × 1 mean vector is µ = (µ1, . . . , µn), E(xi) = µi, and the
covariance matrix is

Σ =

 Σ1,1 . . . Σ1,n

. . . . . . . . .
Σn,1 . . . Σn,n

 , (4)

where Σi,i = σ2
i = Var(xi), i = 1, . . . , n. This parameterization of the Gaus-

sian pdf, with the particular quadratic form, thus defines the marginal dis-
tributions directly; p(xi) = N(µi, σ

2
i ). Off-diagonal entries Σi,j = Cov(xi, xj),

and the correlation between xi and xj is Corr(xi, xj) = Σi,j/(σiσj).
In the simplest multivariate case there are two random variables x1 and x2.

If they are independent, the covariance matrix in equation (4) is diagonal.
Then Σ−1 is also diagonal, and this means that the quadratic form has no
cross-terms in this case. The joint pdf then simplifies to a product of the
two marginal distributions; p(x) = p(x1)p(x2). If, in addition, the mean and
variance terms of x1 and x2 are the same, the two variables are said to be
independent and identically distributed (i.i.d.). The joint distribution of
x = (x1, x2) is then

p(x) =
1

2πσ2
exp

(
−1

2

(x1 − µ)2

σ2
− 1

2

(x2 − µ)2

σ2

)
= p(x1)p(x2), (5)

where µ and σ2 are the common mean and variance of the two variables. For
processes, the main interest is in modeling dependent variables.

Figure 2 illustrates two bivariate Gaussian pdfs in a contour plot. In
both displays the means are zero and the variables have unit variance. In
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the left display the two variables are dependent with Corr(x1, x2) = 0.9.
This positive correlation means that the two variables have a tendency of
being jointly larger than the means, or jointly smaller. In the right display
the variables are independent. In such contour plots the ellipses (left) and
circles (right) indicate (x1, x2) variables where the pdf p(x1, x2), with the
quadratic form, has constant value. This is also indicated in Figure 1, where
the vertical lines going down from the density function indicate an interval
for the random variable.

2.3 Linear transformations

A transformation y = Fx + b of size n × 1 random vector x, with size
m × n fixed matrix F and fixed m × 1 vector b, has Gaussian pdf p(y) =
N(Fµ+b,FΣF ′). This occurs because a linear transformation of Gaussian
variables remains Gaussian distributed. The only parameters are then the
mean vector and covariance matrix, which can be computed by direct use of
expectation and covariance operations.

In particular, extending what was shown for the univariate case, a Gaus-
sian variable can be transformed to independent zero-mean and unit-
variance variables z = (z1, . . . , zn) by setting F = L−1, b = −L−1µ as
follows:

z = y = L−1(x− µ), x = µ+Lz, Σ = LL′. (6)

Here L is the lower triangular Cholesky factor of the covariance matrix Σ.
For the covariance matrix

Σ =

[
1 0.9

0.9 1

]
, L =

[
1 0

0.9 0.44

]
. (7)

Another useful transformation is obtained by setting b = 0 and F = 1′n,
where 1n is a length n × 1 vector of 1 entries. This transformation results
in the sum of Gaussian variables; y = x1 + x2 + . . . + xn. If the mean
values are 0, the mean of the sum will also be 0. The variance of the sum will
depend on the covariances between xi and xj, i, j = 1, . . . , n. If the variables
are i.i.d. with variance σ2, the sum has variance nσ2.

2.4 Conditioning

If we split the random vector in two blocks of variables, denoted xA =
(xA,1, . . . , xA,nA

) and xB = (xB,1, . . . , xB,nB
), where nA + nB = n, the mean
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Figure 3: Conditional pdf for x1 when x2 = 1 or x2 = −1.

and covariance matrix are

µ = (µA,µB), Σ =

[
ΣA ΣA,B

ΣB,A ΣB

]
, (8)

where µA and µB are the block mean vectors. Moreover, the matrix ΣA

holds the covariance matrix for xA, ΣB the covariance matrix for xB, and
ΣA,B = Σ′B,A is the size nA × nB cross-covariance matrix between xA and
xB.

If we know the variables in the B block, the conditional pdf of xA is also
Gaussian with the following conditional mean and covariance:

E(xA|xB) = µA + ΣA,BΣ−1B (xB − µB),

Var(xA|xB) = ΣA −ΣA,BΣ−1B ΣB,A. (9)

For the simplest multivariate pdf with two variables, we let x1 be the
block A variable, while x2 is the block B variable. We consider the case
from Figure 2 left), where there is correlation 0.9 between x1 and x2, and
they both have zero-mean and unit variance. Figure 3 shows the conditional
distribution of the variable x1 for this case, when we know that x2 = −1 or
x2 = 1. Clearly the mean of the pdf is shifted from the unconditional mean of
E(x1) = 0. The conditional mean is E(x1|x2) = 0.9x2. Further, the variance
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is reduced from Var(x1) = 1 (Figure 1) to Var(x1|x2) = 1−0.92 = 0.19. This
shift and reduction in uncertainty would not occur if we had independence
between x1 and x2. In that case p(x1|x2) = p(x1).

2.5 Sampling

We can generate random realizations from the multivariate Gaussian pdf in
several ways. One uses sequential sampling of random variables, going from
1 to n. This works because

p(x) = p(x1)p(x2|x1) . . . p(xn|xn−1, . . . , x1). (10)

We then start by sampling random variable x1 according to p(x1) = N(µ1, σ
2
1).

Next we generate x2 from the pdf p(x2|x1) = N (E(x2|x1),Var(x2|x1)), and
so on. For time t we sample xt from pdf p(xt|xt−1, . . . , x1). At each stage
t = 2, . . . , n, the formula for conditional mean and variance is defined in
equation (9), for different blocks A and B.

This sequential approach gives the same result as a matrix-vector solu-
tion using the Cholesky factorization. It can be explained as follows: The
covariance matrix Σ is decomposed as LL′ = Σ as in equation (6). Now,
the random simulation can be done by

x = µ+Lz, p(z) = N(0n, In), (11)

where 0n is a size n×1 vector of 0 entries and In is the size n identity matrix.
Recall from equation (6), or show directly, that equation (11) gives the correct
mean µ and the correct covariance structure since LInL

′ = LL′ = Σ. (See
Exercise C for more on computing the Cholesky factor.)

3 Stationary Gaussian processes

Consider a random process x(t) ∈ R for continuous time or location reference
t ≥ 0. The Gaussian process is defined as follows: For any configuration of
n times or locations: t1, . . . , tn, the variable x = (x1, . . . , xn) is multivariate
Gaussian distributed. Here, xi = x(ti) denotes the random variable at time
ti, i = 1, . . . , n.

A Gaussian process is mean (first order) stationary if E (x(t)) = µ
for all times t. In practice one often extends this to model the mean as a
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Figure 4: Three different correlation functions.

function of some covariates, like in a regression setting. The process is second
order stationary if Var (x(t)) = σ2 for all times t and the correlation only
depends on the time differences: Corr (x(t), x(s)) = Corr (x(r + t), x(r + s)).
Since the Gaussian distribution is defined by the first two moments (mean
and covariance), the distribution is stationary if the mean and covariance is
stationary. This will not hold for other distributions.

3.1 Correlation functions

A key element in Gaussian processes is to model Corr (x(t), x(s)), which spec-
ifies the dependence in the process over time. There exist famous correlation
functions that are used for this purpose. They all start at 1 for t = s, and
decline to 0 as the distance between times t and s increases. The exponen-
tial correlation function is defined by Corr (x(t), x(s)) = exp(−φE|t− s|),
a common Matern type correlation function is Corr(x(t), x(s)) = (1 +
φM |t − s|) exp(−φM |t − s|), and the squared exponential or Gaussian
correlation function is defined by Corr(x(t), x(s)) = exp(−φG|t − s|2).
Here, φE, φM and φG are fixed parameters that determine the decay in the
different correlation functions.

Figure 4 shows these three different correlation functions. In this display
they are all constructed to equal 0.05 at correlation distance |t − s| = 25.
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This means that the exponential decay parameter φE = 3/25 and the squared
exponential decay parameter is φG = 3/252. For the Matern type, we ap-
proximated the decay parameter to be about φM = 0.19.

Note the differences near |t − s| = 0 in Figure 4, where the exponential
function comes down much faster than the Matern type, which is again much
faster than the squared exponential correlation function. This decay near 0
distance is indicative of the smoothness (differentiability) of the process x(t).

In the special case of the exponential correlation function, the Gaussian
process satisfies the Markov property (see Exercise E), and the conditional
distribution becomes p(xi|xi−1, . . . , x1) = p(xi|xi−1) for times t1 < . . . <
ti−1 < ti.

There are other correlation functions that are useful in different applica-
tions. For instance, some correlation functions go below 0 and have negative
correlation for some intermediate distances, and then approach 0 from be-
low. There are also a larger class of Matern correlation functions, with the
exponential and squared exponential as special cases. Correlation functions
further extend to higher dimensional locations such as the spatial case with
(ti,E, ti,N , ti,D) being east, north and depth coordinates. However, it is not
easy to just come up with a parametric model that gives a valid correlation
function. The reason for this challenge is that one must get a positive def-
inite covariance matrix Σ for any configuration of times t1, . . . , tn. Positive
definite here means that any linear combination of variables must have pos-
itive variance: for any non-zero size 1 × n vector f , Var(fx) = fΣf ′ > 0.
Equivalently, from linear algebra, this means that the smallest eigenvalue of
Σ is positive. It is common practice to use established correlation functions,
like the ones shown in Figure 4, or various combinations of these.

3.2 Sampling Gaussian processes

Gaussian processes are simulated on a defined grid of time points which has
the resolution required for the particular application. In the following we
illustrate a Gaussian process model on times t ∈ [0, 100]. A regular grid
set of times t = 1, . . . , 100 is defined, and the process is simulated on this
discretized grid of the time domain. One can simulate x = (x1, . . . , x100),
where x(ti) = xi, using the approach in equation (11). This builds on the
Cholesky factorization LL′ = Σ of the covariance matrix Σ.

For the illustration we specify a constant mean µ = 0 and variance σ2 = 12

on the grid of time values. This entails that the 100×100 covariance matrix Σ
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has 1 entries on the diagonal and correlation terms on the off-diagonal entries.
The correlation entries depend on the distances and the choice of correlation
function. An exponential correlation function with φE = 3/25 and a Matern
type correlation function with parameter φM = 0.19 is used. Figure 4 shows
that these parameter values give very small correlation (< 0.05) for points
that are more than 25 distance units away from each other. For the Matern
type we have Σi,j = (1 +φM |tj− ti|) exp(−φM |tj− ti|), i, j = 1, . . . , 100. The
covariance matrix can be effectively computed by first forming a matrix of
distances, e.g. by setting H = |t1′100 − 1100t

′| for size 100× 1 vector of time
points t = (1, 2, . . . , 100)′. (There are often established coding routines for
extracting distances in software such as R, Matlab or Python. See Exercise
D.) The covariance matrix for a Matern-type correlation function is then
Σ = (1 +φMH)⊗ exp(−φMH), where ⊗ means elementwise multiplication.

Figure 5 shows realizations from the exponential and Matern type cor-
relation functions. In this display the realization of independent Gaussian
variables, denoted z in equation (11), is identical for the two plots. This
means that differences are only due to the correlation structure of the two
models, and the way this influences the L matrix for the exponential and
the Matern type. The plot shows that the Matern type correlation function
gives a smoother process than the exponential function.

Algorithm 1 summarizes the main steps for sampling a random realization
from a Gaussian process with Matern type correlation function. If several
samples are needed, from the same model, only the last two steps of the
algorithm must be re-done.

Algorithm 1 Simulation of a Gaussian process with constant variance and
Matern type correlation function
Require: Time points t = (t1, . . . , tn), viewed as a size n × 1 vector. Mean µ = (µ1, . . . , µn), variance

σ2, correlation function parameter φM .
1: Build the distance matrix H, where Hij = |ti − tj |.
2: Compute the covariance matrix Σ = σ2(1 + φMH)⊗ exp(−φMH).
3: Factorize Σ = LL′.
4: Draw n independent standard normal variables z = (z1, . . . , zn).
5: return x = µ+Lz.

3.3 Conditional process

Assume the process is known at some time points tB = (tB,1, . . . , tB,nB
), and

denote the variables at these time points by xB = (xB,1, . . . , xB,nB
). When
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Figure 5: One realization from the Gaussian process with exponential co-
variance function and one with Matern type correlation function. The mean
is 0 and variance 1. The correlation decay parameters are φE = 3/25 and
φM = 0.19.

we now know the outcome of the Gaussian process at some locations, we
can use equation (9) to compute the conditional mean and covariance of the
process, which defines the conditional Gaussian process. Again, this relies on
a discretization of the domain of interest, and we let xA = (xA,1, . . . , xA,nA

)
denote the process at a grid of time points tA = (tA,1, . . . , tA,nA

) covering the
domain of interest.

The conditional formulas in equation (9) require the block covariance
matrices, which in this process context will depend on the time differences
or distances, as described above. The distance matrix for block B can be
defined on vector-matrix form HB = |tB1′nB

− 1nB
t′B| for size nB × 1 vector

tB, like was done in the previous subsection, or by built-in methods for
extracting distances. Similarly, block A covariance matrix ΣA is constructed
from distance matrix HA. The size nA×nB cross-covariance matrix ΣA,B is
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a function of the distances between time points in the A and B sets, e.g. by:

HA,B = |tA1′nB
− 1nA

t′B| =

∣∣∣∣∣∣
 tA,1 . . . tA,1

. . . . . . . . .
tA,nA

. . . tA,nA

−
 tB,1 . . . tB,nB

. . . . . . . . .
tB,1 . . . tB,nB

∣∣∣∣∣∣
=

 |tA,1 − tB,1| . . . |tA,1 − tB,nB
|

. . . . . . . . .
|tA,nA

− tB,1| . . . |tA,nA
− tB,nB

|

 . (12)

See also Exercise D. When these distance matrices have been built, we can
compute the required covariance matrices, and use equation (9) to get the
conditional Gaussian distribution.

Algorithm 2 summarizes the main steps of computing the conditional
mean and covariance of a Gaussian process, conditional on data xB at time
points tB.

Algorithm 2 Conditional mean and covariance of a Gaussian process with
Matern type correlation function
Require: Time points tA = (tA,1, . . . , tA,nA

), viewed as a size nA × 1 vector. Conditioning variable
or data xB = (xB,1, . . . , xB,nB

) at time points tB = (tB,1, . . . , tB,nB
), mean vectors µA and µB ,

variance σ2, correlation function parameter φM .
1: Build the distance matrices HA, HB and HA,B , e.g. by equation (12).
2: Build the covariance matrices ΣA = σ2(1 + φMHA) ⊗ exp(−φMHA), ΣB = σ2(1 + φMHB) ⊗

exp(−φMHB) and ΣA,B = σ2(1 + φMHA,B)⊗ exp(−φMHA,B).

3: return E(xA|xB) = µA + ΣA,BΣ−1
B (xB − µB), Var(xA|xB) = ΣA −ΣA,BΣ−1

B Σ′A,B .

The conditional variance terms are on the diagonal of the conditional
covariance matrix Var(xA|xB). Along with the conditional mean, they define
the conditional marginal distribution p(xA,i|xB), i = 1, . . . , nA. The 90 %
conditional prediction interval at this time point, given xB, is thus{

E(xA,i|xB)± z0.05
√

Var(xA,i|xB)

}
, (13)

where z0.05 = 1.64 is the upper 5 percentile of the standard Gaussian pdf. If
we want to predict the probability that the process is below a threshold a we
have

p(xA,i < a|xB) = Φ

(
a− E(xA,i|xB)√

Var(xA,i|xB)

)
, (14)

where Φ(b) =
∫ b
−∞

exp(−z2/2)√
2π

dz is the cumulative distribution function of the

standard Gaussian pdf evaluated at b. (See Exercise G.)
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Figure 6: The process is known at selected times (circles). Top: Condi-
tional mean (solid) and 90 % prediction interval (dashed). Bottom: Five
realizations from the conditional Gaussian process.

The conditional process can be simulated by applying the Cholesky fac-
torization method described in equation (11) and in Algorithm 1, now ap-
plied to the conditional covariance matrix Var(xA|xB). With this sampling
method one can get realizations that account for the joint properties in the
process model, conditional on xB. In contrast, equation (13) provides only
marginal predictions for all i = 1, . . . , n, conditional on xB.

Figure 6 (top) shows conditional prediction intervals as in equation (13),
given xB = (1, 0.5, 0, 0.2,−0.7) at points tB = (11.5, 23.3, 36.2, 57.6, 68.7).
Figure 6 (bottom) shows five conditional realizations of a Gaussian process,
given the same data. In this display the discretization grid for the process is
again set to (1, . . . , 100), like in the previous section. The correlation function
used is the Matern type with parameter φM = 0.19.

4 Brownian motion

The Brownian motion is a continuous time and continuous state model with
special requirements to the process increments. Process increments are de-
fined by x(ti)−x(ti−1), for any configuration of times t0 = 0 < t1 < t2 < . . ..
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We define the following for the process increments:

• x(ti)− x(ti−1) and x(tj)− x(tj−1) are independent for all i 6= j.

• Stationarity, i.e. the distribution of x(ti)−x(ti−1) is identical to that
of x(ti + s)− x(ti−1 + s), for any s.

• x(ti)−x(ti−1) is Gaussian distributed with 0 mean and variance σ2(ti−
ti−1).

The process is assumed to start at x(0) = 0. If this is different, the process
can simply be shifted to 0.

With σ = 1 this zero-mean process is sometimes referred to as the stan-
dard Brownian motion. There exists various extensions, such as the Brownian
motion with drift which has mean (ti−ti−1)µ for the independent increments,
or the geometric Brownian motion which is defined by y(t) = exp (x(t)),
where x(t) satisfy the definition for the Brownian motion.

4.1 Properties

Since x(0) = 0, the marginal pdf of x(t) is Gaussian with mean 0 and variance
tσ2. The probability that p(x(t) > 0) = 1/2 at any point, because of the
symmetry of the Gaussian distribution.

The Brownian motion is a Markov process because of the independent
increments, and we have conditional pdf

p(xi|xi−1, . . . , x0) = p(xi|xi−1) = N
(
xi−1, (ti − ti−1)σ2

)
, (15)

where xi = x(ti), for any i. The mean is defined by the conditioning variable
xi−1, and the variance increases linearly with the time difference. We note
that for a stationary zero-mean process with exponential correlation function,
the related equation is

p(xi|xi−1, . . . , x0) = p(xi|xi−1) = N
(
ξxi−1, σ

2(1− ξ2)
)
, (16)

where ξ = exp (−φE(ti − ti−1)) (See exercise E). Here, the mean goes to (the
unconditional level) 0 and the variance goes to (the unconditional level) σ2

as the time difference increases.
Like above, we define xi = x(ti), i = 1, . . . , n, to be the process values for

grid partitioning t1, . . . , tn of the time line. The joint distribution is defined
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Figure 7: Five realizations of a standard Brownian motion.

by the Gaussian distributed independent increments (see also equation (15)),
and we get

p(x) = p(x1)p(x2|x1) . . . p(xn|xn−1) (17)

=
1√

2πσ2(t2 − t1)
exp

(
− 1

2σ2

x21
t2 − t1

)
. . .

· 1√
2πσ2(tn − tn−1)

exp

(
− 1

2σ2

(xn − xn−1)2

tn − tn−1

)
.

One can sample, or simulate, a Brownian motion by using equation (17).
On the grid of time values t0 = 0 < t1, . . . < tn, with the required resolution,
a realization xi at time ti is the sum of all independent increments up to that
time:

xi =
i∑

k=1

√
(tk − tk−1)σzk = xi−1 +

√
(ti − ti−1)σzi, (18)

where zi, i = 1, . . . , n, are independent standard Gaussian variables. Figure
7 shows five realizations of standard Brownian motion variables on the time
grid 1, 2, . . . , 100.

Algorithm 3 summarizes the main steps for sampling a Brownian motion.
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Algorithm 3 Simulation of a Brownian motion with mean 0
Require: Time points t0 = 0 < t1 < . . . < tn at the desired resolution. Initial value x(0) = 0. Scale

parameter σ.
1: Draw n independent standard normal variables (z1, . . . , zn).

2: return x(ti) = x(ti−1) +
√

(ti − ti−1)σzi, i = 1, . . . , n.

0 10 20 30 40 50 60 70 80 90 100

t

-6

-4

-2

0

2

4

6

8

10

12

14
P

re
d
ic

ti
o
n

Figure 8: Prediction interval conditional on x(0) = 0 and x(100) = 7.

Equation (15) defines the forward Markov property for the Brownian
motion, where ti > ti−1. The backward process is also Markovian because of
the independent increment definition. The conditional pdf of xi given xj,
for tj > ti is defined by equation (9). Equation (18) shows that Cov(xi, xj) =
Var(xi) = σ2ti, because of the independent increments. This means that the
conditional mean and variance are

E(xi|xj) =
ti
tj
xj, Var(xi|xj) = σ2ti(1−

ti
tj

). (19)

When time ti is very close to tj, the conditional mean is close to xj, and the
variance is near 0. The mean decreases linearly from xj at ti = tj to 0 at
ti = 0. The variance is 0 at ti = 0 and ti = tj, and it has a maximum at
ti = tj/2. Figure 8 shows the conditional mean and prediction interval when
x(100) = 7 for t ∈ (0, 100), with σ = 1.

Note that by specifying the time intervals, say h = ti − ti−1 in equation
(18), dividing by h on both sides in equation (18), and letting the h approach
zero to get a certain limit, the Brownian motion can be seen as a stochastic
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differential equation. These formulations are used a lot in several applications
involving stochastic dynamics.

4.2 Hitting times

The Brownian motion is used a lot in finance, where it plays an important
role in the modeling of random fluctuations in markets. In these situations a
common question is related to hitting times. Say, what is the first time that
a stock price will exceed threshold a.

Let Ta be the first time the standard Brownian motion, starting at x(0) =
0, hits the threshold a > 0. The probability that the process exceeds a
threshold a > 0 at time t is

p(x(t) > a) = p(x(t) > a|Ta ≤ t)P (Ta ≤ t) + p(x(t) > a|Ta > t)p(Ta > t)

= p(x(t) > a|Ta ≤ t)P (Ta ≤ t) = P (Ta ≤ t)/2, (20)

since the event Ta > t means that p(x(t) > a|Ta > t) = 0, and because of
the symmetric Gaussian pdf: p(x(t) > a|Ta ≤ t) = p(x(t) < a|Ta ≤ t) = 1/2.
This means that the hitting time distribution is

p(Ta ≤ t) = 2p(x(t) > a) = 2
(

1− Φ
(
a/
√
tσ2
))

. (21)

When the time t gets larger Φ(a/
√
tσ2) approaches 1/2, and the probability

p(Ta ≤ t) naturally goes to 1. For fixed t, the probability in equation (21)
starts at 1 for a = 0, and it goes to 0 when a increases.

Exercises

A: Marginal and conditional probability calculations

Consider a bivariate Gaussian distribution for (x1, x2), with mean (0, 0),
variance terms equal to σ2

1, σ2
2 and correlation ρ.

1. Find Σ−1, and write out the quadratic form in the exponent of the
joint Gaussian model.

2. Complete the square for x2, and use this to integrate out this variable
x2. Show that the resulting marginal pdf for x1 has marginal mean 0
and variance σ2

1.
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3. Use conditional probability, with the joint pdf for (x1, x2) in the numer-
ator and the marginal of x2 in the denominator, to find the conditional
distribution for x1 given x2.

B: Covariance identities

Consider block variables xA and xB, where x = (xA,xB). Set means equal
to 0. The covariance matrix is defined in equation (8). The inverse covariance
matrix, also known as the precision matrix, has the same block structure as
the covariance matrix:

Σ−1 = Q =

[
QA QA,B

QB,A QB

]
. (22)

1. Use QΣ = I to find the relations between the block matrix entries of
Q and the block matrix entries of Σ.

2. The conditional pdf of p(xA|xB) ∝ p(xA,xB), because xB is known.
Use the quadratic form to find the conditional mean and variance as a
function of Q and xB, and relate this to problem B.1 and equation (9).

C: Cholesky factor

For a covariance matrix Σ the Cholesky factorization is defined by LL′ = Σ
(see equation (6)). Here, L is a lower triangular matrix, i.e. Li,j = 0 for
i < j.
(In Matlab and R the matrix L′ is found by chol, in Python one can use
np.linalg.cholesky.)

1. Consider a zero mean bivariate Gaussian distributions with the follow-
ing covariance matrix

Σ =

[
1 −0.6
−0.6 1

]
. (23)

Find the Cholesky factorization of the covariance matrix in equation
(23). Check your calculations on the computer.

2. Sample and visualize 1000 variables from the distribution, using the
matrix found in C.1. Do the same for the 2× 2 matrix in equation (7).
Compare the two bivariate distributions.
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3. Consider a mean zero trivariate Gaussian distribution with covariance
matrix

Σ =

 1 0.9 0.1
0.9 1 0.2
0.1 0.2 1

 . (24)

Find the Cholesky factorization and use it to sample 1000 samples from
this distribution.
(You can visualize 3D scatterplots by e.g. scatter3 or plot3 in Matlab,
scatterplot3d in R (see also ggplot2), or scatter in Python.)

D: Distances

Specify a number of points along the line; say tA = (3, 5, 9, 10, 13, 20), tB =
(3.5, 5.2, 7.8, 12.1).

1. Study ways to build the distance matrices HA, HB and HA,B between
these points. (See equation (12).) Check out various implementation
methods; for-loops, the described vectorization method, or other built-
in approaches.
(In Matlab you can use the built-in functions pdist and squareform, and
likewise in Python after importing
from scipy.spatial.distance import pdist
from scipy.spatial.distance import squareform
In R you have dist.)

E: Exponential correlation and Markov property

Consider a Gaussian process with mean 0 mean and variance 1. Consider
three points r < s < t on the real line. The goal is to predict x(t), conditional
on x(s) and x(r).

1. Assuming the exponential correlation function is valid, compute the
conditional mean and variance of x(t), given x(s) and x(r). Show that
this process is Markovian.

2. Assuming the squared exponential correlation function, compute the
conditional mean and variance of x(t), given x(s) and x(r). Show that
this process is not Markovian.
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F: Simulation of Gaussian processes

1. Specify points t = 1, 2, . . . , 100. Sample and visualize 10 realizations of
the zero-mean and variance-one unconditional Gaussian process with
exponential correlation function for parameter φE = 3/10, and 10 oth-
ers with φE = 3/30.

2. Data (0.58,−1.34, 0.61) are provided at points t = (11.2, 51.8, 81.4).
Consider the setting from F.1, again with the points t = 1, 2, . . . , 100,
and sample and visualize 10 realizations of the conditional Gaussian
process, given the data, with exponential correlation function for pa-
rameter φE = 3/10, and 10 others with φE = 3/30.

G: Production quality and temperatures

One application of Gaussian processes is optimization of complicated func-
tions or experimental configurations. Examples include logistics or opera-
tional planning where the response is a complex function of several input
variables, decisions about production controls in natural resources utiliza-
tion or environmental treatment settings for efficient cleaning of pollutants,
and many others. The goal in such applications is to find the input value t
that gives the optimal output, that is the value that maximizes some ’profit’
according to

t̂ = argmaxt (x(t)) .

Because it is time-consuming or costly to evaluate x(t), one can only run
the experiments for some inputs ti, resulting in outputs x(ti) i = 1, . . . , nB.
Conditional on the data, one either chooses the best input value, or one
looks for the next most valuable evaluation point using a Gaussian process
approximation for the outputs.

We look at an industrial application where product quality x(t) has a very
complex relation to the temperature t input variable. At the production unit
they are aiming for high quality, and the goal is to produce at the best
possible temperature, but they do not know this optimal temperature value.
Initially the product quality is assumed to be a Gaussian process with mean
E(x(t)) = 50 for all temperatures, Var(x(t)) = 42 and Corr(x(t), x(s)) =
(1 + 0.2|t− s|) exp(−0.2|t− s|).

The production unit allows experimentation to get data and guide the
search for optimal temperature inputs. Experiments are very costly, so in
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Figure 9: Plot of the production quality at five temperature evaluation
points.

this case the product quality has only been evaluated for five temperature
values. Figure 9 shows the results from the experiments. The five evalua-
tion points are (t, x(t)): (19.4, 50.1), (29.7, 39.1), (36.1, 54.7), (50.7, 42.1) and
(71.9, 40.9).

They will use the Gaussian process model (with the specified parameters)
along with the available data to find useful temperatures for testing.

1. Define a regular grid of temperature points from t = 10 to t = 80
degrees, with spacing 0.5 (n = 141 point). Construct the required mean
vectors and covariance matrices to compute the conditional mean and
covariance of the process at the 141 points, given the five evaluation
points. Display the prediction as a function of temperature, along with
the 90 % conditional prediction intervals.
(The cumulative distribution function is built in to Matlab (normcdf),
R (pnorm) and Python (norm.cdf, after adding from scipy.stats import
norm on top of file).)

2. The company has a goal of production quality above 57. Use the pre-
dictions from G.1 to compute the probability that x(t) > 57 for all t on
the grid of 141 points, given the evaluation points. Plot the probability
as a function of temperature.
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3. The company decides to run another experiment with temperature
t = 40.7. The result is x(40.7) = 49.7. Augment the evaluation set
with this information, i.e. six points in total. Given the new infor-
mation, compute and visualize the prediction, prediction intervals and
the probabilities that x(t) > 57, for all t on the grid of 141 points. If
the company has budget for yet another experiment, which input tem-
perature would you recommend, considering their goal for production
quality?

H : Brownian motion for stock price

Assume the price of a certain stock develops according to a Brownian motion
with 0 mean and noise standard error σ = 0.75 per day. On Jan 1st, the
price of the stock is $ 40. In this exercise the goal is to predict the future
stock price.

1. What is the probability that the stock price is larger than $ 50 on May
1st (120 days ahead)? Find the solution by analytical calculations and
approximate the solution by generating and plotting 100 realizations
of the random process with a daily resolution until 1 May.

2. On March 2, the price of the stock is $ 45. What is now the probability
that the stock price is larger than $ 50 on May 1st (60 days ahead)?
Find again the solution by analytical calculations and approximate
the solution by generating and plotting 100 realizations of the random
process with a daily resolution until 1 May.

3. Assume that we know only the stock price of $ 40 on Jan 1st. There
is interest in the waiting time until the stock price has gone up 10
% (to $ 44). Find the distribution analytically and approximate this
distribution with sorted simulated hitting times over 100 realizations.
(You can truncate the simulations at some time (say t = 10000) to
avoid the tail in the hitting time distribution.)
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