
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=utas20

Download by: [Universitetbiblioteket I Trondheim NTNU] Date: 05 January 2018, At: 06:52

The American Statistician

ISSN: 0003-1305 (Print) 1537-2731 (Online) Journal homepage: http://www.tandfonline.com/loi/utas20

Understanding the Ensemble Kalman Filter

Matthias Katzfuss, Jonathan R. Stroud & Christopher K. Wikle

To cite this article: Matthias Katzfuss, Jonathan R. Stroud & Christopher K. Wikle (2016)
Understanding the Ensemble Kalman Filter, The American Statistician, 70:4, 350-357, DOI:
10.1080/00031305.2016.1141709

To link to this article:  https://doi.org/10.1080/00031305.2016.1141709

Accepted author version posted online: 12
Feb 2016.
Published online: 21 Nov 2016.

Submit your article to this journal 

Article views: 670

View related articles 

View Crossmark data

Citing articles: 4 View citing articles 

http://www.tandfonline.com/action/journalInformation?journalCode=utas20
http://www.tandfonline.com/loi/utas20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00031305.2016.1141709
https://doi.org/10.1080/00031305.2016.1141709
http://www.tandfonline.com/action/authorSubmission?journalCode=utas20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=utas20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/00031305.2016.1141709
http://www.tandfonline.com/doi/mlt/10.1080/00031305.2016.1141709
http://crossmark.crossref.org/dialog/?doi=10.1080/00031305.2016.1141709&domain=pdf&date_stamp=2016-02-12
http://crossmark.crossref.org/dialog/?doi=10.1080/00031305.2016.1141709&domain=pdf&date_stamp=2016-02-12
http://www.tandfonline.com/doi/citedby/10.1080/00031305.2016.1141709#tabModule
http://www.tandfonline.com/doi/citedby/10.1080/00031305.2016.1141709#tabModule


THE AMERICAN STATISTICIAN
, VOL. , NO. , –
http://dx.doi.org/./..

Understanding the Ensemble Kalman Filter

Matthias Katzfussa, Jonathan R. Stroudb, and Christopher K. Wiklec

aDepartment of Statistics, Texas A&M University, College Station, TX, USA; bDepartment of Statistics, George Washington University, Washington DC,
USA; cDepartment of Statistics, University of Missouri, Columbia, MO, USA

ARTICLE HISTORY
Received June 
Revised November 

KEYWORDS
Bayesian inference;
Forecasting; Kalman
smoother; Sequential Monte
Carlo; State-space models

ABSTRACT
The ensemble Kalman filter (EnKF) is a computational technique for approximate inference in state-space
models. In typical applications, the state vectors are large spatial fields that are observed sequentially over
time. The EnKF approximates the Kalman filter by representing the distribution of the state with an ensem-
ble of draws from that distribution. The ensemble members are updated based on newly available data by
shifting instead of reweighting, which allows the EnKF to avoid the degeneracy problems of reweighting-
based algorithms. Taken together, the ensemble representation and shifting-based updatesmake the EnKF
computationally feasible even for extremely high-dimensional state spaces. The EnKF is successfully used in
data-assimilation applications with tens of millions of dimensions. While it implicitly assumes a linear Gaus-
sian state-spacemodel, it has also turned out to be remarkably robust to deviations from these assumptions
inmany applications. Despite its successes, the EnKF is largely unknown in the statistics community.We aim
to change that with the present article, and to entice more statisticians to work on this topic.

1. Introduction

Data assimilation involves combining observations with “prior
knowledge” (e.g., mathematical representations of mechanistic
relationships; numerical models; model output) to obtain an
estimate of the true state of a system and the associated uncer-
tainty of that estimate (see, e.g., Nychka and Anderson 2010, for
a review). Although data assimilation is required in many fields,
its origins as an area of scientific inquiry arose out of the weather
forecasting problem in geophysics. With the advent of the dig-
ital computer, one of the first significant applications was the
integration of the partial differential equations that described
the evolution of the atmosphere, for the purposes of short-to-
medium range weather forecasting. Such a numerical model
requires initial conditions from real-world observations that are
physically plausible. Observations of the atmosphere have vary-
ing degrees of measurement uncertainty and are fairly sparse in
space and time, yet numerical models require initial conditions
thatmatch the relatively dense spatial domain of themodel. Data
assimilation seeks to provide these “interpolated” fields while
accounting for the uncertainty of the observations and using the
numerical model itself to evolve the atmospheric state variables
in a physically plausiblemanner. Thus, data assimilation consid-
ers an equation for measurement error in the observations and
an equation for the state evolution, a so-called state-spacemodel
(see, e.g., Wikle and Berliner 2007).

In the geophysical problems that motivated the development
of data assimilation, the state and observation dimensions are
huge and the evolution operators associated with the numeri-
cal models are highly nonlinear. From a statistical perspective,
obtaining estimates of the true system state and its uncertainty
in this environment can be carried out, in principle, by a type
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of inference called filtering, which attempts to obtain sequen-
tially the posterior distribution of the state at the current time
point based on all observations collected so far. The combina-
tion of high dimensionality and nonlinearity makes this a very
challenging problem.

The ensemble Kalman filter (EnKF) is an approximate filter-
ing method introduced in the geophysics literature by Evensen
(1994). In contrast to the standard Kalman filter (Kalman 1960),
which works with the entire distribution of the state explicitly,
the EnKF stores, propagates, and updates an ensemble of vectors
that approximates the state distribution. This ensemble repre-
sentation is a form of dimension reduction, in that only a small
ensemble is propagated instead of the joint distribution includ-
ing the full covariance matrix. When new observations become
available, the ensemble is updated by a linear “shift” based on the
assumption of a linear Gaussian state-spacemodel. Hence, addi-
tional approximations are introduced when non-Gaussianity or
nonlinearity is involved. However, the EnKF has been highly
successful in many extremely high-dimensional, nonlinear, and
non-Gaussian data-assimilation applications. It is an embodi-
ment of the principle that an approximate solution to the right
problem is worth more than a precise solution to the wrong
problem (Tukey 1962). For many realistic, highly complex sys-
tems, the EnKF is essentially the only way to do (approximate)
inference, while alternative exact inference techniques can only
be applied to highly simplified versions of the problem.

The key difference between the EnKF and other sequential
Monte Carlo algorithms (e.g., particle filters) is the use of a lin-
ear updating rule that converts the prior ensemble to a posterior
ensemble after each observation. Most other sequential Monte
Carlo algorithms use a reweighting or resampling step, but it is
well known that the weights degenerate (i.e., all but one weight
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are essentially zero) in high-dimensional problems (Snyder et al.
2008).

Most of the technical development and application of the
EnKF has been in the geophysics literature (e.g., Burgers, van
Leeuwen, and Evensen 1998; Houtekamer and Mitchell 1998;
Bishop, Etherton, and Majumdar 2001; Tippett et al. 2003; Ott
et al. 2004; see also Anderson 2009, for a review) and it has
received relatively little attention in the statistics literature. This
is at least partially because the jargon and notation in the geo-
physics literature can be daunting upon first glance. Yet, with
the increased interest in approximate computational methods
for “big data” in statistics, it is important that statisticians be
aware of the power of this relatively simple methodology. We
also believe that statisticians havemuch to contribute to this area
of research. Thus, our goal in this article is to provide the ele-
mentary background and concepts behind the EnKF in a nota-
tion that is more common to the statistical state-space literature.
Although the real strength of the EnKF is its application to high-
dimensional nonlinear and non-Gaussian problems, for peda-
gogical purposes, we focus primarily on the case of linear mea-
surement and evolution models with Gaussian errors to better
illustrate the approach.

In Section 2, we review the standard Kalman filter for linear
Gaussian state-spacemodels.We then show in Section 3 how the
basic EnKF can be derived based on the notions of conditional
simulation, with an interpretation of shifting samples from the
prior to the posterior based on observations. In Section 4, we
discuss issues, extensions, and operational variants of the basic
EnKF, and Section 5 concludes.

2. State-SpaceModels and The Kalman Filter

For discrete time points t = 1, 2, . . ., assume a linear Gaussian
state-space model,

yt = Htxt + vt , vt ∼ Nmt (0,Rt ), (1)
xt = Mtxt−1 + wt , wt ∼ Nn(0,Qt ), (2)

where yt is the observed mt-dimensional data vector at time t ,
xt is the n-dimensional unobserved state vector of interest, and
the observation and innovation error vt andwt aremutually and
serially independent. We call Equations (1)–(2) the observation
model and the evolution model, respectively. The observation
matrixHt relates the state to the observation, and the evolution
(propagator) matrix Mt determines how the state evolves over
time. In weather prediction problems, the state and observation
dimensions are often enormous (i.e., n ≥ 107 andmt ≥ 105). In
addition, with the exception of Section 5.3, we assume thatMt ,
Ht ,Rt , andQt are known, which is often the assumption in geo-
physical applications.

An important form of inference for state-space models is
filtering. In this framework, the goal at every time point t =
1, 2, . . ., is to obtain the filtering distribution of the state; in
Bayesian terms, this is equivalent to the posterior distribution of
xt given y1:t := {y1, y2, . . . , yt}, the data up to time t . This distri-
bution is the conditional distribution of xt given y1:t , which we
denote by xt |y1:t . Filtering for a linear Gaussian model as in (1)–
(2) can be carried out using the Kalman filter, which consists of
two steps at every time point: a forecast step and an update step.

Assuming that the filtering distribution at the previous time
t − 1 is given by

xt−1|y1:t−1 ∼ Nn(μ̂t−1, ̂�t−1), (3)

the forecast step computes the forecast distribution for time t
based on (2) as

xt |y1:t−1 ∼ Nn(μ̃t , ˜�t ),

μ̃t := Mt μ̂t−1,

˜�t := Mt̂�t−1M′
t + Qt . (4)

The update step modifies the forecast distribution using the
new data yt . The update formula can be easily derived by con-
sidering the joint distribution of xt and yt conditional on the
past data y1:t−1, which is given by a multivariate normal distri-
bution,(

xt
yt

)∣∣∣y1:t−1 ∼ Nn+mt

((
μ̃t
Ht μ̃t

)
,

(
˜�t ˜�tH′

t
Ht ˜�t Ht ˜�tH′

t + Rt

))
.

(5)
Using well-known properties of the multivariate normal distri-
bution, it follows that xt |y1:t ∼ Nn(μ̂t , ̂�t ), where the update
equations are given by

μ̂t := μ̃t + Kt (yt − Ht μ̃t ) (6)
̂�t := (In − KtHt )˜�t , (7)

and Kt := ˜�tH′
t (Ht ˜�tH′

t + Rt )
−1 is the so-called Kalman gain

matrix of size n × mt .
An alternative expression for the update equations is given by

μ̂t = ̂�t (˜�
−1
t μ̃t + H′

tR
−1
t yt ) (8)

̂�−1
t = ˜�−1

t + H′
tR

−1
t Ht , (9)

where the second equation is obtained from (7) using the
Sherman–Morrison–Woodbury formula (Sherman and Morri-
son 1950; Woodbury 1950). These equations allow a nice inter-
pretation of the Kalman filter update. The filtered mean in (8)
is a weighted average of the prior mean μ̃t and the observation
vector yt , where the weights are proportional to the prior preci-
sion ˜�−1

t , and H′
tR

−1
t , a combination of the observation matrix

and the data precision matrix. The posterior precision in (9) is
the sum of the prior precision and the data precision (projected
onto the state space).

In summary, theKalman filter provides the exact filtering dis-
tribution for linear Gaussian state-space models as in (1)–(2).
However, if n or mt are large, calculating and storing the n × n
matrices ˜�t and ̂�t and calculating the inverse of the mt × mt
matrix in the Kalman gain (below (7)) are extremely expensive,
and approximations become necessary.

3. The Ensemble Kalman Filter (EnKF)

The ensemble Kalman filter (EnKF) can be viewed as an approx-
imate version of the Kalman filter, in which the state distribu-
tion is represented by a sample or “ensemble” from the distribu-
tion. This ensemble is then propagated forward through time
and updated when new data become available. The ensemble
representation is a form of dimension reduction, which leads
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352 M. KATZFUSS ET AL.

to computational feasibility even for very high-dimensional sys-
tems.

Specifically, assume that the ensemble x̂(1)
t−1, . . . , x̂

(N)
t−1 is a

sample from the filtering distribution at time t − 1 in (3): x̂(i)
t−1 ∼

Nn(μ̂t−1, ̂�t−1). Similar to the Kalman filter, the EnKF consists
of a forecast step and an update step at every time point t .

The EnKF forecast step obtains a sample from the forecast
distribution (4) by simply applying the evolution equation in (2)
to each ensemble member:

x̃(i)
t = Mt x̂(i)

t−1 + w(i)
t , w(i)

t ∼ Nn(0,Qt ), i = 1, . . . ,N.

(10)
It is easy to verify that x̃(i)

t ∼ Nn(μ̃t , ˜�t ) holds exactly.
Then, this forecast ensemble x̃(1)

t , . . . , x̃(N)
t must be updated

based on yt , the new data at time t . This update step can be car-
ried out stochastically or deterministically.

3.1. Stochastic Updates

We focus first on stochastic updates, as these are more natural
to statisticians, and can be easily motivated as an approximate
form of conditional simulation (e.g., Journel 1974).

Specifically, to conditionally simulate from the state filtering
distribution, we use the state forecast ensemble in (10), together
with a set of simulated observations ỹ(1)

t , . . . , ỹ(N)
t from the

observation forecast distribution. Setting v(i)
t ∼ Nmt (0,Rt ), it

can be easily verified that x̃(i)
t and ỹ(i)

t = Ht x̃(i)
t − v(i)

t follow
the correct joint distribution in (5). Conditional simulation then
shifts the forecast ensemble based on the difference between the
simulated and actual observations:

x̂(i)
t = x̃(i)

t + Kt (yt − ỹ(i)
t ), i = 1, . . . ,N.

It is straightforward to show that x̂(i) ∼ Nn(μ̂t , �̂t ) by con-
sidering the first two moments: Clearly, E(̂x(i)

t ) = μ̂t , and the
covariance matrix is given by

var(̂x(i)
t ) = var(̃x(i)

t ) + var(Kt ỹ(i)
t ) − 2cov(̃x(i)

t ,Kt ỹ(i)
t )

= ˜�t + KtH˜�t − 2KtH˜�t = ̂�t .

Hence, conditional simulation provides a simple way to update
the forecast ensemble to obtain a filtering ensemble that is an
exact sample from the filtering distribution. This requires com-
putation of the Kalman gain,Kt , which in turn requires compu-
tation and storage of the n × n forecast covariance matrix, �̃t .

To avoid calculating this potentially huge matrix, the update
step of the EnKF is an approximate version of conditional simu-
lation, for which the Kalman gain Kt is replaced by an estimate
K̂t based on the forecast ensemble. Often, the estimated Kalman
gain has the form

K̂t := CtH′
t (HtCtH′

t + Rt )
−1, (11)

where Ct is an estimate of the state forecast covariance matrix
˜�t . The simplest example is Ct = S̃t , where S̃t is the sam-
ple covariance matrix of x̃(1)

t , . . . , x̃(N)
t . For more details, see

Section 4.1.
Then, given an initial ensemble x̂(1)

0 , . . . , x̂(N)
0 , that can be

taken as draws from the posterior distribution at time t = 0, or,

in the case of complex nonlinear models, from various “spin-
up” algorithms (e.g., Hoteit et al. 2015), one can implement the
EnKF in Algorithm 1.

Algorithm 1: Stochastic EnKF
Start with an initial ensemble x̂(1)

0 , . . . , x̂(N)
0 . Then, at each

time t = 1, 2, . . ., given an ensemble x̂(1)
t−1, . . . , x̂

(N)
t−1 of

draws from the filtering distribution at time t − 1, the
stochastic EnKF carries out the following two steps for
i = 1, . . . ,N:
1. Forecast Step: Draw w(i)

t ∼ Nn(0,Qt) and calculate
x̃(i)
t = Mt x̂(i)

t−1 + w(i)
t .

2. Update Step: Draw v(i)
t ∼ Nmt (0,Rt) and calculate

x̂(i)
t = x̃(i)

t + K̂t (yt + v(i)
t − Ht x̃(i)

t ), where K̂t is given in
(11).

Aswe have seen, the EnKFupdate can be nicely interpreted as
an approximate version (because Kt is estimated by K̂t ) of con-
ditional simulation. For alternative interpretations, rewrite the
update step as

x̂(i)
t = x̃(i)

t + K̂t (y(i)
t − Ht x̃(i)

t ) (12)
= (In − K̂tHt )̃x(i)

t + K̂ty(i)
t , (13)

where y(i)
t = yt + v(i)

t is a “perturbed” observation. From (12),
the EnKF update can be viewed as a stochastic version of the
Kalman filter mean update (6), where the prior mean and the
observation, (μ̃t , yt ), are replaced with a prior draw and a per-
turbed observation, (̃x(i)

t , y(i)
t ), respectively. That is, the EnKF

combines a draw from the prior or forecast distribution, x̃(i)
t ,

with a draw from the “likelihood,” y(i)
t ∼ Nmt (yt ,Rt ), to obtain

a posterior draw from the filtering distribution as in (12). From
(13), we further see that the filtering ensemble is a linear com-
bination or “shift” of the forecast ensemble and the observation.

3.2. Deterministic Updates

The update step of the stochastic EnKF in Algorithm 1 can be
replaced by a deterministic update, leading to the widely used
class of deterministic EnKFs. These methods obtain an approxi-
mate ensemble from the posterior by deterministically shifting
the prior ensemble, without relying on simulated or perturbed
observations.

The main idea behind the deterministic filter in the uni-
variate case is as follows. Suppose we have prior draws, x̃(i) ∼
N (μ̃, σ̃ 2), and we want to convert them to posterior draws,
x̂(i) ∼ N (μ̂, σ̂ 2). To do this we first standardize the prior
draws as z(i) = (x̃(i) − μ̃)/σ̃ , and then “unstandardize” them
as x̂(i) = μ̂ + σ̂ z(i). Combining the two steps gives x̂(i) = μ̂ +
σ̂ /σ̃ (x̃(i) − μ̃). Thus, the deterministic update involves shifting
and scaling each prior draw so that the resulting posterior draws
are shifted toward the data and have a smaller variance than the
prior. Figure 1(b) illustrates the idea in a simple univariate exam-
ple.

There are many variants of deterministic updates, including
the ensemble adjustment Kalman filter (EAKF) and ensemble
transformKalman filter (ETKF). The details of these algorithms
differ slightly when N < n, but they all belong to the family of
square root filters and are based on the same idea (Tippett et al.
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THE AMERICAN STATISTICIAN: GENERAL 353

Figure . Simulation from a one-dimensional state-spacemodel with n = mt ≡ 1,Ht ≡ 1,Mt ≡ 0.9,Rt ≡ 1, andQt ≡ 1. The top panel (a) shows the state, observations,
Kalman filter, and the N = 5 EnKF ensemble members for the first  time points. For the Kalman filter, we show the filtering mean and 75% confidence intervals (which
correspond to the average spread from N = 5 samples from a normal distribution). For the first time point t = 1, the bottom panel (b) compares the Kalman filter and
stochastic EnKF updates (with perturbed observations) to a deterministic EnKF (see Section .) and to the importance sampler (IS), which is the basis for the update step
in most particle filters (e.g., Gordon, Salmond, and Smith ). The bars above the ensemble/particles are proportional to the weights. All approximation methods start
with the same, equally weightedN = 5 prior samples. Even for this one-dimensional example, importance sampling degenerates and represents the posterior distribution
with essentially only one particle with significant weight, while the EnKF methods shift the ensemble members and thus obtain a better representation of the posterior
distribution.

2003). Omitting the subscript t for notational simplicity, let L̃
be a matrix square root of the forecast (prior) covariance matrix
˜� (i.e., ˜� = L̃̃L′), and define D := Ht ˜�tH′

t + Rt . Then we can
write (7) as

̂� = (In − L̃̃L′H′D−1H)̃L̃L′ = L̃(In − L̃′H′D−1HL̃)̃L′ = L̂̂L′,

and so L̂ = L̃W is amatrix square root of the posterior (filtering)
covariancematrix, whereWW′ = In − L̃′H′D−1HL̃. That is, the
filtering covariance matrix can be obtained by post-multiplying
the forecast covariance with the matrixW.

In the deterministic EnKF variants, the n × n matrix ˜� is
obtained based on the forecast ensemble with N � n mem-
bers, and the resulting low-rank structure is computationally
exploited in different ways by the different variants.

3.3. Summary of The Basic EnKF

In summary, the EnKF only requires storing and operating on
N vectors (ensemble members) of length n, and the estimated
Kalman gain can often be calculated quickly (see Section 4.1). In
theory, as N → ∞, the EnKF converges to the (exact) Kalman
filter for linear Gaussian models, but large values of N are typ-
ically infeasible in practice. Updating the ensemble by shift-
ing makes the algorithm much less prone to degeneration than
alternatives that rely on reweighting of ensemble members (e.g.,

particle filters). This is illustrated in a simple one-dimensional
example in Figure 1.

Deterministic EnKF variants generally have less sampling
variability and are more accurate than stochastic filters for very
small ensemble sizes (e.g., Furrer and Bengtsson 2007, sec. 3.4).
However, if the prior distribution is non-Gaussian (e.g., multi-
modal or skewed), then stochastic filters can be more accurate
than deterministic updates (Lei, Bickel, and Snyder 2010).

For readers interested in applying the EnKF to large real-
world problems, we recommend user-friendly software such as
the data assimilation research testbed, or DART (Anderson et al.
2009).

4. Operational Variants and Extensions

4.1. Variance Inflation and Localization

For dimension reduction and computational feasibility, the
ensemble size,N, typically ismuch smaller than the state dimen-
sion, n. If the estimated Kalman gain K̂t is (11) with the esti-
mated forecast covariance Ct simply taken to be S̃t (the sam-
ple covariance matrix of the forecast ensemble), then K̂t is often
a poor approximation of the true Kalman gain. This has two
adverse effects that require adjustments in practice. First, small
ensemble sizes lead to downwardly biased estimates of the pos-
terior state covariancematrix (Furrer and Bengtsson 2007). This
can be alleviated by covariance inflation (e.g., Anderson 2007a),
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354 M. KATZFUSS ET AL.

Figure . For the spatial example in Section ., (a) N = 25 prior ensemble members x̃(1)
t , . . . , x̃(25)

t and (b) observations y and posterior ensemble members
x̂(1)
t , . . . , x̂(25)

t from the stochastic EnKF algorithm with tapering radius r = 10. Note that the x-axis represents spatial location, not time. For illustration, three mem-
bers of the ensemble are shown in different colors. The prior ensemble members have constant mean and variance, while the mean of the posterior ensemble is shifted
toward the data and the variance is smaller than for the prior ensemble.

where S̃t is multiplied by a constant greater than one. Second,
small ensemble sizes lead to rank deficiency in S̃t , and often
result in spurious correlations appearing between state compo-
nents that are physically far apart. In practice, this is usually
avoided by “localization.” Several localization approaches have
been proposed, but many of them can be viewed as a form of
tapering from a statistical perspective (Furrer and Bengtsson
2007). Themost common form of localization setsCt = S̃t ◦ Tt ,
where ◦ denotes the Hadamard (entrywise) product, and Tt is a
sparse positive definite correlation matrix (e.g., Furrer, Genton,
and Nychka 2006; Anderson 2007b).

Figures 2 and 3 illustrate the EnKF update step with taper-
ing localization in a one-dimensional spatial example at a single
time step. Omitting time subscripts for notational simplicity, we
define the state vector as x = (x1, . . . , x40)′, which represents
the “true spatial field” at n = 40 equally spaced locations along
a line. Observations are taken at each location, so m = 40, and
we assume thatH = I and R = I. The prior distribution for the
state is x ∼ N40(0, ˜�), with ˜�i j = φ|i− j|, where φ = 0.9. That
is, the state follows a stationary spatial process with an expo-
nential correlation function.We implement the EnKF algorithm
with localization using N = 25 ensemble members, where the
tapering matrix T is based on the compactly supported 5th-
order piecewise polynomial correlation function of Gaspari and
Cohn (1999), with a radius of r = 10. No covariance inflation
is used. Figure 2 shows the prior and posterior ensemble mem-
bers from the EnKF algorithm, along with the observed data.
Figure 3 shows the true and ensemble-based prior covariance
matrix, ˜� and C, and the Kalman gain,K. Note that the Kalman
gain is equivalent to the posterior covariance (i.e.,K = ̂�) in this
example becauseH = R = I.

4.2. Serial Updating

In many high-dimensional data assimilation systems (such
as DART), the EnKF is implemented using serial updating
(e.g., Houtekamer and Mitchell 2001), where at each time t ,
the ensemble is updated after each scalar observation, yti, i =
1, . . . ,mt , rather than simultaneously using the entire vector
yt . Serial assimilation requires that the observation errors are

uncorrelated (i.e.,Rt is diagonal). IfRt is nondiagonal, the obser-
vation Equation (1) can be premultiplied by R−1/2

t to obtain
uncorrelated observation errors.

For linear Gaussian models, it can be shown that the simul-
taneous and serial Kalman filter schemes yield identical pos-
teriors after mt observations. The advantage of serial updating
is that it avoids calculation and storage of the n × mt Kalman
gain matrix Kt (which requires inverting an mt × mt matrix).
Serial methods require computing an n × 1 Kalman gain vec-
tor (and hence inverting only a scalar) for each of the mt scalar
observations. Stochastic and deterministic EnKFs can be imple-
mented serially by applying the updating formulas to each row
of (1) one at a time. Covariance inflation and localization can
also be applied in the serial setting, but they are only applied to
one column of the covariance matrix after each scalar update,
and the serial updates are then generally not equivalent to joint
updates.

4.3. Smoothing

While we have focused on filtering inference so far, there is
another form of inference in state-space models called smooth-
ing. Based on data y1:T collected in a fixed time period
{1, . . . ,T}, smoothing attempts to find the posterior distribu-
tion of the state xt conditional on y1:T for any t ∈ {1, . . . ,T}.
For linear Gaussian state-space models, this can be done exactly
using the Kalman smoother, which consists of a Kalman fil-
ter, plus subsequent recursive “backward smoothing” for t =
T,T − 1, . . . , 1 (e.g., Shumway and Stoffer 2006). Again, this
becomes computationally challenging when the state or obser-
vation dimensions are large. Formoderate dimensions, smooth-
ing inference can then be carried out using an ensemble-based
approximation of the Kalman smoother, which also starts with
an EnKF and then carries out backward recursions using the
estimated filtering ensembles (e.g., Stroud et al. 2010).

If the state dimension is very large or the evolution is non-
linear, the most widely used smoother is the ensemble Kalman
smoother (EnKS) of Evensen and van Leeuwen (2000). The
EnKS is a forward-only (i.e., no backward pass is required) algo-
rithm that relies on the idea of state augmentation. At each time
point t , the state vector is augmented to include the lagged states
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Figure . For the spatial example in Section ., comparison of true and ensemble-based prior covariance and Kalman gain matrices. Top row: (a) true covariance ˜�, (b)
sample covariance S̃, (c) tapered sample covariance C with r = 10. Bottom row: Kalman gain matrices K and K̂ obtained using the prior covariances in the top row (i.e.,
plots (d)–(f ) correspond to covariances in (a)–(c), respectively). The sample forecast covariancematrix in (b) and the corresponding Kalman gainmatrix in (e) exhibit a large
amount of sampling variability. The tapered covariance matrix in (c) has less sampling variability, the correlations die out faster, and become identically zero (shown in
white) for locations more than r = 10 units apart. The corresponding gain matrix in (f ) is a more accurate estimate of the true gain than the untapered version in (e), but it
is no longer sparse.

back to time 1: x1:t = (x′
1, . . . , x′

t )
′. The update step is analo-

gous to the EnKF, but instead of updating only xt , it is necessary
to update the entire history x1:t . To avoid having to update the
entire history, sometimes amoving-windowapproach is applied,
in which the update at each time point only considers the recent
history up to a certain time lag.

4.4. Parameter Estimation

So far, we have assumed that the only unknown quantities in the
state-space model (1)–(2) are the state vectors xt , and that there
are no other unknown parameters. In practice, of course, this is
often not the case. ThematricesHt ,Mt ,Rt , andQt often include
some unknown parameters θ (e.g., autoregressive coefficients,
variance parameters, spatial range parameters) that also need to
be estimated.

There are two main approaches to parameter estimation
within the EnKF framework. The first is a very popular approach
called state augmentation (Anderson 2001). Here, the param-
eters are treated as time-varying quantities with small artifi-
cial evolution noise. We then combine the states and param-
eters in an augmented state vector zt = (x′

t , θ
′
t )

′ and run an
EnKF on the augmented state vector to obtain posterior esti-
mates of states and parameters at each time t . This approach
workswell inmany examples; however, it implicitly assumes that
the states and parameters jointly follow a linear Gaussian state-
space model. For some parameters, such as covariance parame-
ters, this assumption is violated, and themethod fails completely
(Stroud and Bengtsson 2007).

The second approach to parameter estimation is based on
approximate likelihood functions constructed using the output
from the EnKF. It can in principle be used for any type of param-
eter. The parameters are estimated either by maximum likeli-
hood (ML) or Bayesian methods. Examples of these approaches
include sequential ML (Mitchell and Houtekamer 2000), off-
line ML (Stroud et al. 2010), and sequential Bayesian methods
(Stroud and Bengtsson 2007; Frei and Künsch 2012). In general,
thesemethods have been successful in examples with a relatively
small number of parameters, and more work is needed for cases
where the parameter and state are both high dimensional.

4.5. Non-Gaussianity and Nonlinearity

As we have shown above in Section 3, the EnKF updates are
based on the assumption of a linear Gaussian state-space model
of the form (1)–(2). However, the EnKF is surprisingly robust to
deviations from these assumptions, and there are many exam-
ples of successful applications of such models in the geophysical
literature.

In general, nonlinearity of the state-space model means that
Htxt in (1) is replaced by a nonlinear observation operator
Ht (xt ), or Mtxt−1 in (2) is replaced by a nonlinear evolution
operator Mt (xt−1). An advantage of the EnKF is that these
operators do not have to be available in closed form. Instead,
as can be seen in Algorithm 1, these operators simply have to
be “applied” to each ensemble member. In addition, it is easy
to show that if x̂t−1 is a sample from the filtering distribution,
then x̃t = Mt (x̂t−1) + wt is an (exact) sample from the forecast
distribution.
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The effectiveness of the EnKF and its variants in the non-
Gaussian/nonlinear case is a consequence of so-called lin-
ear Bayesian estimation (e.g., Hartigan 1969; Goldstein and
Wooff 2007). In its original form, linear Bayesian estimation
seeks to find linear estimators given only the first and sec-
ond moments of the prior distribution and likelihood, and in
that sense it is “distribution-free.” This is a Bayesian justifica-
tion for kriging methods in spatial statistics (Omre 1987) and
non-Gaussian/nonlinear state-spacemodels in time-series anal-
ysis (e.g., West, Harrison, and Migon 1985; Fahrmeir 1992).
When considering linear Gaussian priors and likelihoods, this
approach obviously gives the true Bayesian posterior. In other
contexts, it is appealing in that it allows one to update prior infor-
mation without explicit distributional assumptions. However, as
described in O’Hagan (1987), the linear Bayesian approach is
potentially problematic in the context of highly non-Gaussian
distributions (e.g., skewness, heavy tails, multimodality, etc.).

If the EnKF approximation is not satisfactory in the pres-
ence of non-Gaussianity, it is possible to employ normal mix-
tures (e.g., Alspach and Sorenson 1972; Anderson and Ander-
son 1999; Bengtsson, Snyder, andNychka 2003), hybrid particle-
filter-EnKFs (Hoteit et al. 2008; Stordal et al. 2011; Frei andKün-
sch 2012), and other approaches (see, e.g., Bocquet, Pires, and
Wu 2010, for a review).

5. Conclusions

The EnKF is a powerful tool for inference in high-dimensional
state-space models. The key idea of the EnKF relative to other
sequential Monte Carlo methods is the use of shifting instead
of reweighting in the update step, which allows the algorithm
to remain stable in high-dimensional problems. In practice, the
algorithm requires the choice of important tuning parameters
(e.g., tapering radius and variance inflation factor).

As noted in the introduction, much of the development of
the EnKF has been outside the statistics community. There
are many outstanding problems and questions associated with
EnKFs (e.g., parameter estimation, highly nonlinear and non-
Gaussian models), and statisticians surely have much to con-
tribute.
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