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Exam!

I One proper exercise.

I Home exam questions.
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Grouping data

I Split data in similar groups (clusters).

I Use these clusters for subsequent classification of other data.

I Distances play a crucial role in both tasks.
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Gaussian mixtures

(Sect 4.3 in Steinley)
Density for a Gaussian mixture (with equal weights and covariance):

p(x) =
1

K

K∑
b=1

φN(x ;µb,Σ).

φN represents the N variate Gaussian density function. x = (x1, . . . , xN)t .
µb = (µb

1 , . . . , µ
b
N)t is the mean for the bth component of the mixture.

Σ is a N × N positive definite covariance matrix.



K-means clustering and other clustering methods

Mixtures
Density for a Gaussian mixture (with equal weights and covariance):

p(x) =
1

K

K∑
b=1

φN(x ;µb,Σ).

Illustration K = 5 (small covariance):
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Mixtures
Density for a Gaussian mixture (with equal weights and covariance):

p(x) =
1

K

K∑
b=1

φN(x ;µb,Σ).

Illustration K = 5 (medium covariance):
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Mixtures
Density for a Gaussian mixture (with equal weights and covariance):

p(x) =
1

K

K∑
b=1

φN(x ;µb,Σ).

Illustration K = 5 (large covariance):
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General type for Gaussian mixture model

Density for a Gaussian mixture:

p(x) =
K∑

b=1

wbφN(x ;µb,Σb),
K∑

b=1

wb = 1.

This can be regarded as the basis for discriminant analysis used in
classification and clustering.
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General type for Gaussian mixture model

Density for a Gaussian mixture:

p(x) =
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wbφN(x ;µb,Σb),
K∑

b=1

wb = 1.

This can be regarded as the basis for discriminant analysis used in
classification and clustering.
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Classification by Linear discriminant analysis

Assume wb = 1/K , µb and Σb = Σ, b = 1, . . . ,K are known from
training.
What is the most likely class b for a new data point x ?
Classify x to the class which has the largest element density
φN(x ;µb,Σ):

b̂ = argmax
[
φN(x ;µ1,Σ), . . . , φN(x ;µK ,Σ)

]
,

Decision boundary class b and c :

2x tΣ−1µb − µbt

Σ−1µb = 2x tΣ−1µc − µc t Σ−1µc .
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Mixtures and boundaries

2x tΣ−1µb − µbt

Σ−1µb = 2x tΣ−1µc − µc t Σ−1µc .

Boundaries go between modes.
Illustration K = 5 (medium covariance):
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Classification by Quadratic discriminant analysis

Assume wb = 1/K , µb and Σb, b = 1, . . . ,K are known from training.
What is the most likely class b for a new data point x ?
Classify x to the class which has the largest element density
φN(x ;µb,Σ):

b̂ = argmax
[
φN(x ;µ1,Σ1), . . . , φN(x ;µK ,ΣK )

]
,

Decision boundary class b and c :

−x tΣb,−1x+2x tΣb,−1µb−µbt

Σb,−1µb = −x tΣc,−1x+2x tΣ−1µc−µc t Σ−1µc .
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Classification in Gaussian mixtures

Assume wb, µb and Σb, b = 1, . . . ,K are known from training.
What is the most likely class b for a new data point x ?
Classify x to the class which has the largest element density
φN(x ;µb,Σ):

b̂ = argmax
[
w1φN(x ;µ1,Σ1), . . . ,wKφN(x ;µK ,ΣK )

]
,

Weights can be interpreted as prior probabilities of classes :
wb = P(x ∈ b), b = 1, . . . ,K ,

∑K
b=1 wb = 1.
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Training in mixtures : supervised learning

From labeled data, one can train the model parameters wb, µb and Σb,
b = 1, . . . ,K .
Labeled data means that we know the class for each dataset. The data
are then (x1, b1), . . . , (xn, bn). Weights are fraction in class, mean and
covariance are computed in the usual way from data in the relevant class:

ŵb =

∑n
i=1 I (b

i = b)

n

µ̂b =

∑n
i=1 I (b

i = b)x i∑n
i=1 I (b

i = b)

Σ̂
b

=

∑n
i=1 I (b

i = b)(x i − µ̂b)(x i − µ̂b)t∑n
i=1 I (b

i = b)

(Data could be sampled in non-random manner, naturally, or on purpose
(stratified sampling to balance fraction in groups).
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Training in mixtures : unsupervised learning

From unlabeled data, it is more difficult to train the model parameters
wb, µb and Σb, b = 1, . . . ,K .
Unlabeled data means that we do not know the class for each dataset.
The data are then (x1, . . . , xn).
Weights, mean and covariance must be specified by more complex
optimization methods.
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EM algorithm

In statistics the expectation-maximization (EM) algorithm, iteratively
searches for the likely sets of weights, means and covariances.
The EM algorithm starts by initial parameters values. Then each step of
the iterative algorithm consists of

I Expectation: The expected values is taken over the indicators (or
the likelihood), given the current parameter values

I Maximization: New estimates of the parameters are obtained from
the expression obtained by the expected expression.

Solution is non-unique. It tends to depends a lot on the initial parameters
values.
(First defined in a general setting in the statistics literature in Demster et
al (1977), although variants for different special cases were provided,
such as k-means clustering.)
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K-means clustering

From unlabeled data, split data (x1, . . . , xn) in K classes or clusters.
Elements of K-means clustering:

I Except in special cases, results can be non-unique (as with the EM
algorithm). They often depend on the initial values of the algorithm.

I It is using distance measures, and is not tied to a statistical
distributions (as the EM algorithm is).

I It is fast to compute and implemented in most software packages.
kmeans in R and MATLAB. from sklearn.cluster import KMeans in
Python.

I Not obvious to choose K .



K-means clustering and other clustering methods

K-means algorithm

Initialize with K points (called centroids). Iterate the following until no
further changes in sets.

1. Compute from each point to all K centroids.

2. Allocate each point to a cluster associated with the nearest centroid.

3. Update the centroids as the cluster means.
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Illus two dimensional data and K = 2

Initial:
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Illus two dimensional data and K = 2

Update:
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Illus two dimensional data and K = 2

Final:
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Alg from Steinley paper:
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Initial points

The Achilles’ heel of the K-means algorithm is the initialization, which
leads to a local minimum.

I Try several different initializations and check sensitivity.

I Remove outliers or select influential points in pre-processing steps.

I Use another simple algorithm for the initialization (Ward’s method
which is sequential starting at n clusters and linking variables that
minimize in an analysis of variance procedure.).

I Variable selection in first steps.

I Add constraints to stabilize approach (number of points in each
cluster, enforce similar clusters, distance between centroids, etc.)
These also speed up the algorithm.
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Choosing K
There are diagnostic plots (elbow plot), etc that can indicate which K is
suitable to get a reasonable match between cluster size and predictive
power to a hold out set.

Akaike’s information criterion can be used to select K (likelihood-based).
Gap-statistic is using the sum of squares within (SSW) clusters
(equivalent the within cluster sum of squares; WCSS), and statistical
properties of the sampled data.
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Distances

In most cases the Euclidean distance is used for the K-means algorithm,
but other measures could be used:

I K-median clustering

I Variable reduction / Projection in MDS space. (In high dimensions
distances are often large and similar.)
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Other methods

Other unsupervised clustering methods

I Graph or tree learning.

I Self organizing maps

I (variational) autoencoders.
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Other methods

Tree - graphs clusters

Form a tree based on the ’optimal’ split.
Often done sequentially forward according to some selected criterion.
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Other methods

Self-organizing maps

Sometimes called Kohonen maps (Kohonen, 1980).
Builds a best-matching unit for points.
Weights to best matching units are based on distances in a neural
network representation.
Clusters are easy to visualize.
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Other methods

Project

I Conduct Dynamic Time Warping on a dataset (you simulate
yourself).

I Conduct K-means clustering of data in the 2D MDS space of the
data.
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Other methods

DTW

Figure: Gas-pipe ethane measured in Norway, and in Germany.

Align time series.
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Other methods

DTW

1. Simulate a length 500 autoregressive process of order 1;
x(1), . . . , x(500), with mean 0, stationary variance 1 and
autocorrelation parameter φ = 0.9.

2. Construct a path such that j(1) = 51, j(2) = 52, . . . , j(200) = 250.
j(i) = 250 for i = 201, . . . , 240,
j(241) = 251, j(242) = 252, . . . j(500) = 510.

3. Simulate another time series y(j) = x(i) + εj , εj ∼ N(0, 0.152),
j = 51, . . . , 510.

4. Use DTW to extract the most likely path.

Repeat the process for a few replicate simulations, but with the same
path. Plot the variability in the extracted paths.
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Other methods

Code for DTW

Use established code in your software of preference:
MATLAB and R: dtw.
dtw-python
These also give the distance matrix to the warping possibilities.
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Other methods

Clustering and MDS

Run two varieties of random walks of length 100 on the line and compare
the results.
One model of a random walk (50 first runs) has 0.5 probability of walking
left / right.
The other model one (50 last runs) has 0.6 probability of walking to the
right, and 0.4 probability of walking left.
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Other methods

Clustering and classification of simulations

Plot the two runs in different colors. Can you see a tendency of a
difference?
Conduct MDS and visualize all the 100 datasets in s 2D plot.
Do 2-means clustering in the MDS space.
Count the number of correctly clustered datasets.
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