Latent Gaussian models: Approximate Bayesian inference (INLA)
Motivation and Model

Plan for today

» Recall Latent Gaussian models and INLA
» Template Model Builder.
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Latent Gaussian model

1. Observed data y = ()1, ..., yn) where
wly [ x,n)=m(y|x)= HW(VJIXJ

Often exponential family Normal, Poisson, binomial, etc.
log w(y;|x;) = ijja(_¢ + (¢, y;). b(x) canonical link.

2. Latent Gaussian process x = (xq, ..., X,)

m(x | m) = N[p, X(n)]

3. Prior for hyperparameters 7(n) (Bayesian).

4. Hyperparameters considered fixed, but unknown (Frequentist).
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Inference and prediction in Latent Gaussian models

Around 1990-2000s, Markov chain Monte Carlo was very popular for
Bayesian inference and prediction in latent Gaussian models.
Today MCMC s still very popular, but not so much for latent Gaussian
models. Alternatives are Laplace approximations or INLA.
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Idea behind INLA Inference

Split the joint density

m(x,n,y) =m(m)m(x|n)m(y | x) = 7(y)r(n | y)r(x | n.y)
Clearly:
_ m(mr(xmn(y [ x)  w(m)m(x[m)n(y | x)
)= e [0, y) (x| m,7)
Marginalization:

7(x;19) = [ 70| y)e(x; | m.y)dn
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Laplace approximation

. i
A(nly) o

(m)m(x|n)7(y | x)

(x| n,y)

=f(n,y)
Use a Gaussian approximation to full conditional #(x | n,y).
i = m(n,y) = argmax,[x(x|n)7(y | x)].
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Gaussian approximation of full posterior

vvyyvyy

v

1 B n
m(x [m,y) ocexp | = (x = w)ET (x — p) + ) logm(y;lx)
j=1

log 7(y;|x;) = %(f)(x’) + (&, yj). b(x) is canonical link. (Poisson
likelihood : b(x) = mexp(x). Binomial : b(x) = mlog[l + exp(x)].
Fixed m.)

Expand GLM part log 7(y;|x;) to second order.

Iterative solution to posterior mode m = (n,y). ('Scoring’).
m=p—XA[ATZA + P} (z(y,m) — Ap).

Fit Gaussian approximation from Hessian at posterior mode:

(x [ m,y) = N(in, V).

P = P(m). Size n X n matrix factorization required.
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Expansion - at each iteration to reach conditional mode

1 B n
w(x [ 1,y) o exp | =5 (x = )E 0= ) + D v — bxP) — B0g)05 — )
j=1
The Gaussian approximation to full conditional has
Viy.n(x*) =Z-EZR'E, R=X +diag(1/b"(x’))

Pty n (¥, x°) = p+ ZR 7 [z(y, x°) — p
Zi(y;, ) = [y — B'(x7) + xPB" (/B (X)),  j=1,....n
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Practical implementation

Numerical approximation of #(n|y)

Margina densy (g vlog o)

o]

oo
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Practical implementation

Numerical approximation of #(n|y), Step 1: Find mode

nal donsiy = og vJog i)

©

T2
o9y

Each step requires m(n, y), #(x | m,y) and Laplace.
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Practical implementation
grid

Numerical approximation of #(n|y), Step 2: Use Hessian at mode to set

Margina densy (09 vJ0g o)
a2

N



Latent Gaussian models: Approximate Bayesian inference (INLA)
Inference

Nested approximation of m(x;|y)

m(y[x)m(x|6)
™ X|y7 0 o8 K

-0 G gy, 0)
Using the Laplace approximation again, for fixed x;.
design points).

#t(x—_j|x;, y,0) approximated by a Gaussian (for each x; on a grid or
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Example: Lancaster disease map

» Number of infections in different regions

» Binomial data (with small counts).

Spatsamping ocstons frLacaster octonda
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Example: Lancaster disease map

LA, INLA and MCMC prediction at one site, for two parameter sets.
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Example: Precipitation in Middle Norway
Number of days with rain for k = 92 sites in September-October 2006.

Registration sites in longitude / latitude.
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Example: Precipitation in Middle Norway

Binomial data y; = Binomial[%, 61].
Standard GLM gives no significance to East, North, Altitude.
Include only spatial trend.

» Qutlier detection
» Spatial design
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Outlier detection

Use crossvalidation 7(y; | y_;).

#ily) = / S w0 |y R0 |y )l | %)
X

Inference separately for each y;. l.e. n times. Approximate predictive
percentiles

L w1 | yj) = /2, S L y_) = 1-a/2
Compare (Yiower,Yupper) With observed y;.
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Results : Outlier detection
Results or/2 = 0.01: detect 4 outliers (open circles).

Registration sites in longitude / latitude.
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Spatial design

Prospective view: y — (y,y,).

Y, extra data at 'new’ spatial registration sites.
'Imagine’ these observations - do not acquire them

Design criterion is: Integrated prediction variance.

F=>> Vi ly,y)r(y.ly)
Ya o J
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Results: Spatial design
Results of three design.
0: Existing design with 88 points (outliers excluded).
A: Currently installed stations, 88 plus 10 known sites (4 outlier sites and
6 sites out of service).
B: 88 plus 10 = 2 - 5 new random sites around two existing sites (50km
radius).

Registration sites in longitude / latitude.
66 T T T T T T
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Results: Spatial design
Results of three designs.
0: Existing design: Jo = 18.68.
A: Currently installed stations: fa=17.94.
B: Random around two existing sites: g = 17.85

Registration sites in longitude / latitude.
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Discussion

INLA software

INLA software: http://www.r-inla.org

Easy to call:

>inlaly x + f(nu,model="iid"), family = c("poisson”), data = data,
control.predictor=list(link=1))

Rue et al. (2009)

Routine runs on Gaussian Markov random fields.

(Project Feb 20)
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Template model builder (TMB)

Frequentist analysis (to latent Gaussian models), which fits the maximum
marginal likelihood estimates. Then plug this in for prediction, or
approximate the Fisher information of the estimate.

The marginalization over latent variables is approximated by the Laplace
approximation.

The optimization requires derivatives.
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Laplace approximation (again)

Version 1:

I(T/;y) x 7r77(x)7r”7(y | X)

(x| ¥)

(Approximate denominator by Gaussian.)

3

(n.y)
Version 2:

(n;y) = / T (X)n(y | x)dx

(Approximate integral by quadratic form.)
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Laplace approximation (integral solution)

Version 2:

L*(n) = L*(m:y) = (2m)"?|H(n)["/? exp[f (%, m)]
(Expand exponent to a quadratic form.)
X = argmaxy [y (x)my(y | X)]

f(x,m) = log[my (x)mn(y | x)]

d*f(%,m)
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Maximum likelihood estimator

) = argmaxy L™ (n)
This has nice asymptotic properties (when data size n goes to infinity),
under some regularity conditions.
For instance, the MLE is asymptotically normal, and has a variance
defined by the second derivative of L*(n) at the MLE ).
MLE and properties of MLE requires derivatives!
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Generality of Laplace approximation

» Fast and reliable for Latent Gaussian models (Gaussian
approximation to full conditional).

» More generally applicable if stable derivatives.
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Automatic differentiation (AD)

The essence of TMB is stable differentiation using software for
calculating derivatives of all elementary operations. And then combining
this for reliable optimization.

The code is usually compiler-based, so first and second derivatives are
compiled together with the original program. (TMB calls C++ routines,
but you don't see them.)
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AD and elementary operations

» partial derivatives are computed for elementary operation; binary
(plus, minus, multiplication, division) and unary (log, exp)

» savings by organizing computations in a graph (forward-backward
extraction of derivatives).

Figure 1:  CppAD tape T1 for f(&1,...,&) = & + Y0 ,(& — &-1)* . Nodes “Inv 1"-“Iny
8 correspond to &,..., & and node “CSum 24” corresponds to f(&,...,&). Node labels
indicate the elementary operations, numbering indicates the order in these operations are
evaluated, arrows point from operation arguments to results, double arrows correspond to the
square operator x~2 which is implemented as x*x.
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General automatic differentiation (AD)

General form

t=¢(r,s)

d¢ , do
r_ HY Y
t = drr + dss
Example:

t=¢(r,s)=rs

t'=sr' +rs
Each time t = rs is evaluated, t' = sr’ + rs’ is also computed
automatically.
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AD for MLE

) = argmaxy, L™ (n)
Nested optimizations:
» Inner optimization : X(n,y), usually some kind of Newton method.
» OQuter optimization for 7}, usually some kind of quasi Newton.

Both these benefit from exact derivatives from AD. Each time a function
is called, its derivatives are automatically provided.

This is usually applicable for a wide range of non-linear regression
problems with random effects.
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TMB software

TMB software: model < — makeADfun()
Kristensen et al. (2015)

Watch TMB tutorial video:

https://www.youtube.com/watch?v=A5CLrhzNzVU&t=

(Project Feb 20)




	Motivation and Model
	Inference
	Examples
	Discussion
	Inference

