
Markov chain Monte Carlo

Markov chain Monte Carlo

Jo Eidsvik

Mathematical Sciences, NTNU



Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC)

I Usual Stochastic Processes Markov chains; a transition matrix P
from which one can (sometimes) derive the (unique) stationary
distribution π.

I MCMC, one would like to find, for a given distribution π, the
transitions P which has π as limiting distribution.

This has become a very popular method for Monte Carlo sampling during
the last 20− 30 years. (Hastings original paper was in 1970.)
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Monte Carlo sampling

Suppose we want to approximate some expectation:

m = E [f (x)] =
∑
x

f (x)πx

We assume it is relatively easy to simulate from the π distribution.
Monte Carlo algorithm:

I Sample xb, b = 1, . . . ,B from distribution π.

I Approximate by averaging:

m̂ =
1

B

B∑
b=1

f (xb)

Under weak regularity conditions, m̂→ m, when B →∞.
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MCMC

MCMC uses dependent samples to do Monte Carlo approximations.
Idea: Construct a Markov chain that converges to π. Then take sample
averages. The first (transient) part (called burn-in) is discarded in the
sample averages because it is would be biased from the initial state.
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Requirements of Markov chain

1. Markov chain must converge to right limiting density or probability
mass function π(x)

2. Markov chain must stay in the right stationary density or probability
mass function π(x)

3. Irreducible, Aperiodic chain

4. For asymptotic properties of integral approximation we require
ergodicity and recurrence.
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MCMC

There are two main algorithms.

I Gibbs sampling.

I Metropolis-Hastings sampling.
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Gibbs sampler

Gibbs sampling is one MCMC method. Transition matrices (kernel) are
composed of full conditionals.
Algorithm

I Initiate x0, b = 0.

I Iterate while b < B,

1. Pick an element i of vector x .
2. Sample xb+1

i ∼ π(xi |xb
−i )

3. Set xb+1
j = xb

j for all j 6= i .
4. b = b + 1
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Gibbs sampler for N2(0,Σ)

For the bivariate Gaussian with mean 0, identity variance, and correlation
ρ, the Gibbs sampler goes as follows:
Algorithm

I Initiate x0 = (x01 , x
0
2 ), b = 0.

I Iterate while b < B,

1. Sample xb+1
1 ∼ N(ρxb

2 , 1− ρ2)
2. Sample xb+1

2 ∼ N(ρxb+1
1 , 1− ρ2)

3. b = b + 1
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Gibbs sampler

The Gibbs sampler has been extremely successful :

I In large graphical models

I When full conditionals are directly available

I When split-and-conquer is feasible by conjugate prior-posteriors.

I When model dependence / interaction is not too large, so that
convergence and mixing is not too poor.
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Gibbs sampler: Example

Graphical model:

I Success probability p(t) = Beta(a, b)

I Individual level variable xi ∈ {0, 1}, p(xi = 1|t) = t, i = 1, . . . , n.

I Response variable p(yi |xi , q) = N(xi , q
−1).

I Precision of measurement p(q) = Gamma(α, β).
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Gibbs sampler: Example
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Gibbs sampler: Example

This model is very common in ’mixed’ models applied in medicine,
geostatistics, finance, etc. The hierarchical model imposes dependence
through common parent nodes and conditional independence. It is ideal
for splitting the model building in different stages.

I p(xi |t, x1, . . . , xi−1) = p(xi |t).

I p(q|t, x1, . . . , xn) = p(q)

I p(yi |t, q, x1, . . . , xn, y1, . . . , yi−1) = p(yi |xi , q).

Joint model
∏

i [p(yi |xi , q)p(xi |q)] p(q)p(t).
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Gibbs sampler: Example

Goal is posterior π(t, x1, . . . , xn, q|y). We cannot explore this directly,
but we can sample iteratively from all full conditionals. These also
simplify because of conditional independence. We need

I p(t|x1, . . . , xn) = Beta(a +
∑

i xi , b + n −
∑

i xi ).

I p(q|x1, . . . , xn, y1, . . . , yn) = Gamma(α + n/2, β +
∑

i (yi−xi )
2

2 )

I p(xi |t, q, yi ) ∝ p(xi |t)p(yi |xi , q).

I p(xi = 1|t, q, yi ) =
t exp(−q

(yi−1)2

2 )

t exp(−q
(yi−1)2

2 )+(1−t) exp(−q
y2
i
2 )

(Gibbs sampling iterates between sampling from these.)
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Metropolis-Hastings algorithm

(Assuming discrete state-space S , but works generally.)

I Initialize x0.

I Iterate the following b = 1, . . . ,B:

1. Sample U ∼ U(0, 1)
2. Propose a new potential state x∗, from proposal distribution

P(x∗ = j |xb−1 = i) = Qij , j ∈ S .

3. Compute the acceptance probability: αij = min
(
1,

πj

πi

Qji

Qij

)
4. Set xb = x∗ = j if U < αij . Else set xb = i .

We are free to choose Qij . This gives enormous flexibility! The art is to
select this wisely! If we do so, Metropolis will beat Gibbs (Performance
metrics later.)
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Random walk MH for N2(0,Σ)

For the bivariate Gaussian with mean 0, identity variance, and correlation
ρ, the Random walk MH sampler goes as follows:
Algorithm

I Initiate x0 = (x01 , x
0
2 ), b = 0.

I Iterate while b < B,

1. Sample x∗ ∼ N(xb, σ2I )
2. Accept xb+1 = x∗ with probability

α = min{1, exp(−1/2x∗tΣ−1x∗ + 1/2xb,tΣ−1xb)}
Else set xb+1 = xb.

3. b = b + 1

The symmetric proposal density cancels in the acceptance rate.
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Reversibility

Metropolis–Hastings gives reversible Markov chains.
A Markov chain is called time reversible if

πiPij = πjPji for all i , j

The condition is often called detailed balance.
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Reversibility - forward backward

I Time reversibility means that we can run chain backward and we do
not see difference in transition dynamics.

I Pi,i1Pi1,i2 . . .Pin,j = Pj,in . . .Pi2,i1Pi1,i for any path of states.

Pback,ji = P(Xn = i | Xn+1 = j) =
P(Xn = i ,Xn+1 = j)

P(Xn+1 = j)
=
πi
πj

Pij

Time-reversibility means Pback,ji = Pji . This is detailed balance equation.
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Reversibility for Metropolis–Hastings

For i 6= j :

πiPij = πiQijαij = min{πiQij , πiQij
πjQji

πiQij
} = min{πiQij , πjQji} = πjPji
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Reversibility for Metropolis–Hastings

For i 6= j :

πiPij = πiQijαij = min{πiQij , πiQij
πjQji

πiQij
} = min{πiQij , πjQji} = πjPji

One could of course imagine non-reversible chains giving a unique
limiting distribution. This has not been done much.
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Choice of MH proposal distribution

This is very case specific.

I Want large changes.

I Want high acceptance probability.

I Want low computational time for proposal and evaluation.

I It is difficult to get all of the above.
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Famous proposals for continuous target distributions

I Random walk: q(x |xb) = N(xb, σ2I ). Only requires tuning of σ.
Asymptotically optimal (under some assumptions) to have
acceptance rate about 0.23.

I Langevin: q(x |xb) = N(xb + σ2

2 ∇ log π(xb), σ2I ). Only requires
tuning of σ. Asymptotically optimal (under some assumptions) to
have acceptance rate about 0.57.

I Independent proposal: q(x |xb) = N(µ,Σ), where µ and Σ can
include derivatives of log π(xb), or some initial approximation.

I It is common to have a hybrid mix of the above, i.e. the proposal
mechanism vary with iterations.
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Mixing of the MCMC sampler

MCMC gives dependent samplers from the density or probability mass
function π.
If the dependence (autocorrelation) is very large, the Markov chain is said
to mix slowly, and it takes a very long time to explore the sample space
adequately.
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Trace plot
From top; Independent proposal, Random walk, Langevin
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Autocorrlation in the MCMC sampler

Integrated autocorrelation:

IAC = 1 + 2
2T+1∑
t=1

ρ̂t , ρ̂t = ˆCorr(xs , xs+t),

T = max(τ ; ρ̂2t + ρ̂2t+1 > 0 for all t ≤ τ)
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Autocorrelation
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Mixing vs evaluation of the MCMC sampler

The number of evaluations (M) increases with the complexity of the
target density per iteration (derivatives? or second derivatives?).
A measure of algorithm cpu time: M× IAC
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Mixing and eigenvalues of the Markov chain

Theoretical results (Peskun, 1973, and others) show that mixing is
governed by the second largest eigenvalue of the Markov chain (largest is
1).
It is difficult to assess these eigenvalues, but a rule of thumb is to push
proposals away from the current state, while still maintaining reasonable
acceptance rates.
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Adaptive proposals
Independent proposal performs really well, when it does not get stuck!
RW moves slowly and surely, but not very far. Why not train proposal
distribution from samples ?
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Adaptive MH Gaussian density

From Haario et al. (2001).
When b > b0,

qb(x∗|bxb, . . . , x0) = N(xb,C )

C = σ2cov(x0, . . . , xb−1) + σ2εI ,

cov(x0, . . . , xb−1) =
1

b − 1

b−1∑
c=0

(xc − x̄)t(xc − x̄)

σ is a tuning parameter, that can depend on the dimension of x .
ε ensures that there is too much adaptation.
Note : this is not a Markov chain! Asymptotically this still works
(dependence is not too strong to make estimates have strange
properties).


