Latent Gaussian models: Approximate Bayesian inference (INLA)

Motivation and Model

Plan for today

» Recall Latent Gaussian models.

» Prior for parameters of Gaussian process. (We will be Bayesian
today.)

» Laplace approximation and numerics for inference, INLA, (Rue et al.,
2009)

» INLA shown for geostatistical applications.



Latent Gaussian models: Approximate Bayesian inference (INLA)
Motivation and Model

Examples of spatial latent Gaussian models

Radioactivity counts: Poisson

Rongelap Island with 157 measurement locations
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Spatial Generalized Linear Model (GLM) : latent log intensity is a GP.
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Latent Gaussian models: Approximate Bayesian inference (INLA)
Motivation and Model

Example of spatial latent Gaussian models

Number of days with rain for k = 92 sites in September-October 2006.

Registration sites in longitude / latitude.
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Spatial GLM: latent logistic probability is a GP.



Latent Gaussian models: Approximate Bayesian inference (INLA)
Approximate Bayesian inference in GLMs
:

Objective

Main goals:

» Fit model parameters (of statistical covariance model in the latent
model).

» Predict latent intensity or risk at all spatial sites
Secondary tasks:

» Qutlier detection.
» Spatial design.
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Approximate Bayesian inference in GLMs

Statistical model

Assume the following hierarchical model

1. Observed data y = (y1,...,Yn) where

n

wly [x,m) =7y | x) =[] =05 | x)

j=1

Often exponential family Normal, Poisson, binomial, etc.
log 7(yj|x;) = y’X’( (9) 4 c(¢,y;). b(x) canonical link.

2. Latent Gaussian process x = (xq, ..., X,)

m(x [ n) = N[p, Z(n)]

3. Prior for hyperparameters 7(n)
NOTE : Last point means we are Bayesian today!
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Approximate Bayesian inference in GLMs

Mixed models - Normal linear case
Common model
» Data model y; = H;3 + v; + ¢, ¢j ~ N(0,72)

» Prior 7(8) ~ N(p5, Xp).
» v; zero-mean Gaussian random effect having a structured covariance
model with parameter 7.

> xp=H;B+v
Can integrate out 3.

w(xln) = / 7(x|8)7(B)dB = N[Hp,, HE s H' + E(n)]

(We could also augment x with 3 - as long as they are Gaussian it is
fine.)
Still a challenge to do inference on 7.
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Approximate Bayesian inference in GLMs

Mixed models - Inference

Common situation that has been hard to infer effectively:
» Frequentist, 7): Laplace approximations or estimating equations.
» Bayesian 7(n|y): Markov chain Monte Carlo.

» Inference not enough, wish to do model criticism, outlier detection,
design, etc. Such goals require fast tools!
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Approximate Bayesian inference in GLMs

Mixed models - GLM

Likelihood is Poisson, binomial, or similar.
» Frequentist: Breslow and Clayton (1993).

» Bayes: Diggle, Tawn and Moyeed (1998), Christensen, Roberts and
Skold (2003), Diggle and Ribeiro (2007).
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Inference

MCMC - Markov chain Monte Carlo

Around 1990-2000s, MCMC was very popular for Bayesian inference and
prediction in latent Gaussian models.

Today MCMC is still very popular, but not so much for latent Gaussian
models. Alternatives are Laplace approximations or INLA (Bayes).
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Inference

Typical MCMC algorithm

Initiate 7]1, x1.
Iterate for i =1,...,B
» Propose n*|x',y.
> Accept (Set n't! = n*) or reject (Set n'*! = n'), with correct
probability (detailed balance).
» For all j; propose xj*|x’;;-1_1,xj"-+1:k,n"+1,y. Accept (XJ{'+1 = x*) or

_ , J
reject (x/* = x).
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Inference

Pros and cons of such MCMC algorithms

» Converges to sampling from the joint distribution.

» All properties of the distribution can be extracted from MCMC
samples.

> Mixing of Markov chain can be very slow. (Blocking or joint
proposals help, but also reduces acceptance rate.)

» Gibbs sampler requires conjugate priors. Fast updates, but mixing
not better.

Slow mixing means that there is very large autocorrelation in the Markov
chain output (x*,11), (x2,1?)..., The method would then need many
iterations to cover the distribution properly. Larger moves in the Markov
chain reduces the autocorrelation, but tends to have small acceptance
rates.
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Inference

Inference without MCMC sampling

Posterior

m(x,n | y) ocw(n) n(x [ n) 7(y | x)
In most cases the main tasks are:

» PREDICTION: Posterior marginals for x;, j =1,...,n

m(x; | y)

» PARAMETER ESTIMATION: Posterior marginals for 7;

(i ly)
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Llnference

:

Split the joint density

Clearly:

m(x,m,y) = n(m)r(x|m)n(y | x) = 7(y)r(n | y)r(x [n,y)

(| y) = m(m)m(x|n)m(y | x)

m(y)m(x | n,y)
Marginalization:

o Tm)m(x|n)n(y | x)

m(x | n,y)

7(x;19) = [ 70| y)e(x; | m.y)dn
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|—Inference

:

Laplace approximation

. i
A(nly) o

(m)m(x|n)7(y | x)

(x| n.y)
Use a Gaussian approximation #(x | n,y).

i = m(n,y) = argmax,[x(x|n)7(y | x)].

m(n.y)
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Inference

Approximate conjugacy

The Laplace approximation relies on approximate conjugacy. If the full
conditional for x is Gaussian, the formula is exact. When we insert a
Gaussian approximation at the mode, the approximation depends on the
non-Gaussian likelihood. (This cannot be bimodal.)

m(m)m(xn)7(y | x)
#(x|n,y)

f(mly) o
x=f1(n,y)

The error of the Laplace approximation (under weak regularity
conditions) is relative and O(n~!) (Tierney and Kadane, 1986).
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Inference

Gaussian approximation of full posterior

n

(x| n,y) xexp —%(x —)E N x —p)+ Z log 7(yj|x;)

j=1
log w(yj|x;) = ijja(¢>§ + c(¢,yj). b(x) is canonical link.
Expand GLM part log 7(y;|x;) to second order.
Iterative solution to posterior mode m = m(n,y). ('Scoring’).
m=p— TA[AZA + P }(z(y,m) — Ap).
Fit Gaussian approximation from Hessian at posterior mode:
#(x [ m,y) = N(in, V).
P = P(). Size n x n matrix factorization required.
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Inference

Practical implementation

Numerical approximation of #(n|y)

Margina densy (g vlog o)
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Inference

Practical implementation

Numerical approximation of #(n|y), Step 1: Find mode

nal donsiy = og vJog i)

©

T2
o9y

Each step requires m(n, y), #(x | m,y) and Laplace.
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Inference

Practical implementation
grid

Numerical approximation of #(n|y), Step 2: Use Hessian at mode to set

Margina densy (09 vJ0g o)
a2

N
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Inference

Few evaluation points

Sparse numerical approximation of 7 (n]y).

Stepping our procedure or central composite design.
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Inference

Direct approximation of m(x;|y)

Direct mixture approach for marginal prediction:
#04ly) =D #(xi|mp, y)&(mly)
[

m(xjln,y) = N(my, Vi j).
mj = mi(n,y). Vij=Viin.y).
Element j of posterior mode and j,j of full posterior covariance.

A frequentist solution would just plug in 7}, the approximate MLE.
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Inference

Nested approximation of m(x;|y)

m(y[x)m(x|6)
™ X|y7 0 o8 K

-0 G gy, 0)
Using the Laplace approximation again, for fixed x;.
design points).

#t(x—_j|x;, y,0) approximated by a Gaussian (for each x; on a grid or
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Examples

Example: Rongelap
» Radioactivity counts at 157 registration sites. Poisson counts.
» 3 (n) defined from exponential covariance function. n = (v, 0),
range and standard deviation.

Rongelap sand wih 157 measuremen tocations
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Examples

Marginals for #(n|y)

Laplace approximation+numerics (left) and solutions with MCMC
(right). Left) Seconds. Right) Minutes.

Marginal donsy = (vly) MOMC samples rom marginal
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Examples

Marginals 7(n|y)

Laplace approximation (solid) and MCMC (dashed).

Marginal density of standard deviation
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Examples

Prediction E(xj|y) and \A/(XJLV)
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Examples

Marginals 7(x;|n, y)

Conditional prediction at one spatial site MCMC (dashed), Importance
sampling (dotted) and direct Gaussian approximation (solid).

Paramotor: {0, 148). Location: {-1860,-800)
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Examples

Example: Precipitation in Middle Norway
Number of days with rain for k = 92 sites in September-October 2006.

Registration sites in longitude / latitude.
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Examples

Example: Precipitation in Middle Norway

Binomial data y; = Binomial[%, 61].
Standard GLM gives no significance to East, North, Altitude.
Include only spatial trend.

» Qutlier detection
» Spatial design
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Examples

Outlier detection

Use crossvalidation 7(y; | y_;).

#ily) = / S w0 |y R0 |y )l | %)
X

Inference separately for each y;. l.e. n times. Approximate predictive
percentiles

L w1 | yj) = /2, S L y_) = 1-a/2
Compare (Yiower,Yupper) With observed y;.
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Examples

Results : Outlier detection
Results or/2 = 0.01: detect 4 outliers (open circles).

Registration sites in longitude / latitude.
66 T T T T
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Examples

Spatial design

Prospective view: y — (y,y,).

Y, extra data at 'new’ spatial registration sites.
'Imagine’ these observations - do not acquire them

Design criterion is: Integrated prediction variance.

F=>> Vi ly,y)r(y.ly)
Ya o J
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Examples

Results: Spatial design
Results of three design.
0: Existing design with 88 points (outliers excluded).
A: Currently installed stations, 88 plus 10 known sites (4 outlier sites and
6 sites out of service).
B: 88 plus 10 = 2 - 5 new random sites around two existing sites (50km
radius).

Registration sites in longitude / latitude.
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Examples

Results: Spatial design
Results of three designs.
0: Existing design: Jo = 18.68.
A: Currently installed stations: fa=17.94.
B: Random around two existing sites: g = 17.85

Registration sites in longitude / latitude.
66 T T T T T T
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Examples

Example: Lancaster disease map

» Number of infections in different regions

» Binomial data (with small counts).

Spatsamping ocstons frLacaster octonda

N



Latent Gaussian models: Approximate Bayesian inference (INLA)

Examples

Example: Lancaster disease map

LA, INLA and MCMC prediction at one site, for two parameter sets.

Parameter: (1,
T

50). Location: (49250,35225)
T
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Parameter: (1, 50). Location: (48250,38000)
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Discussion

INLA contribution

» Mixed GLMs with latent Gaussian models cover wide range of
applications

» The approximations work well for latent Gaussian models

» Generic routines. Software-friendly. Deterministic results (no Monte
Carlo error)

» Enlarge scope of models
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Discussion

Conditions for INLA

» dim(n) is not too high

» No. of latent variables n < 10000 (Markov assumptions depends on
structure). Could turn to approximate GPs.

» Marginals only. Bi-trivariate possible
» Likelihood must be well-behaved, not multimodal.
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Discussion

INLA vs MCMC

MCMC is very general. It explores all aspects of the joint posterior.
Approximate inference (INLA) is much faster. It is tailored to special
tasks, such as marginals.

Applicable to much more than spatial data.

u}
o)
I
i
it




Latent Gaussian models: Approximate Bayesian inference (INLA)

Discussion

INLA software

INLA software: http://www.r-inla.org

Easy to call:

>inlaly x + f(nu,model="iid"), family = c("poisson”), data = data,
control.predictor=list(link=1))

Rue et al. (2009)

Routine runs on Gaussian Markov random fields.

(Project Feb 20)
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