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GMRF

Conditional independence via Q

All other variables than yi are denoted y−i .
Neighborhood of node i is denoted Ni .
Markov assumption:

p(yi |y−i ) = p(yi |yj ; j ∈ Ni )

The neighborhood structure is given by the non-zero entries in Q. This
modeling approach very popular for graphical models.
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The neighborhood structure is given by the non-zero entries in Q.
The Cholesky factor is a matrix square root defined by LLt = Q.
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Conditional (ordered) independence via L
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The Cholesky factor is a matrix square root defined by LLt = Q.
It defines the conditional independence in order p(yi |yj ; j = i + 1, . . . , n).
There exists algorithms for finding the optimal order of calculation
(minimum fill-in) to maintain a sparse matrix.
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GMRF result for continuous spatial processes

I There is an explicit link between a Matern covariance function and
an Stochastic partial differential equation. (Whittle)

I This differential equation can be solved on a mesh for test functions
giving a GMRF with sparse precision matrix. (Lindgren et al.)

(κ2 −∆)α/2x(s) = z(s) (1)

z(s) is an independent (white noise) Gaussian process. The spatial
process x(s) is a Gaussian process with Matern covariance. The
parameters α and κ relates to the covariance and smoothness in the
Matern process.
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Mesh illustration

The result means that GPs can be computed quickly O(n3/2) for large
lattices, while still maintaining properties of the Matern process.
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Gaussian processes and applications

Large spatial (spatio-temporal) datasets of positive variables or counts
data.
GP is a building block.
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Hierarchical model

Conditionally independent data Yi , given xi , i = 1, . . . , n.
Latent variable x = (x1, . . . , xn).

p(x |β,θ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x − µ)′Σ−1(x − µ)

)
.

Mean is E (x |β,θ) = Hβ = µ = (µ1, . . . , µn). Positive-definite
variance-covariance matrix is

Var(x |β,θ) = Σ = Σ(θ) =

 Σ1,1 . . . Σ1,n

. . . . . . . . .
Σn,1 . . . Σn,n

 ,
Σi,i = σ2

i = Var(xi ), Σi,j = Cov(xi , xj), Corr(xi , xj) = Σi,j/(σiσj).
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Examples of spatial latent Gaussian models

Rainfall data are not Gaussian, but the correlation in model parameters
can be integrated by a latent GP.
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Examples of spatial latent Gaussian models
Radioactivity counts: Poisson. The log intensity can be modeled as a GP.
This is a simple approach for getting multivariate distribution functions
for count data.
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Example of spatial latent Gaussian models
Number of days with rain for k = 92 sites in September-October 2006.
The logit probability can be modeled as a GP, getting multivariate
distribution functions for count data.
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Statistical model

Consider the following hierarchical model

1. Observed data y = (y1, . . . , yn) where

p(y | x ,θ) = p(y | x) =
n∏

i=1

p(yi | xi )

Often exponential family: Normal, Poisson, binomial, etc.

log p(yi |xi ) = yixi−b(xi )
a(φ) + c(φ, yi ). b(x) canonical link.

2. Latent Gaussian process x = (x1, . . . , xn)

p(x | β,θ) = N[Hβ, Σ(θ)]

3. Prior for hyperparameters p(θ), p(β) if Bayesian
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Mixed models - Normal linear case

Common model

I yi = H iβ + vi + εi = xi + εi ,

I xi = H iβ + vi , vi is a structured effect.

I xi Gaussian random effect having a structured covariance model
with parameter θ. (Could be U ijx for group or individual i .)

I εi ∼ N(0, τ 2), iid effect.

I yi is observation. (Could be yij , individual or group i , replicate j .
Could be only at some locations, not all.)

I β fixed effect. Prior p(β) ∼ N(µβ ,Σβ).

I εi is random (unstructured) measurement noise. εi ∼ N(0, τ 2).
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Mixed models - marginaliztion

Can integrate out β.

p(x |θ) =

∫
p(x |β,θ)p(β)dβ = N[Hµβ ,HΣβH ′ + Σ(θ)]
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Mixed Gaussian models - full posterior of x

Model for latent process: p(x |θ) = N(µ,Q) (precision formulation,
assuming β known),
Model for data, given latent variable: p(y |x) = N(Ax ,P). P is diagonal
(precision of measurement).

p(x |y ,θ) ∝ p(x |θ)p(y |x) = N(µx|y ,Σx|y )

Σ−1x|y ,θ = Q + A′PA, Σ−1x|y ,θµx|y ,θ = Qµ + A′Py .

(algebraically equivalent with covariance forms given in earlier lectures)
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Mixed models - Gaussian approximate posterior of x

Likelihood model for data, given latent field, is Poisson, binomial, or
similar.
With non-Gaussian data one can optimize the posterior and fit a
quadratic form at the mode. This gives a Gaussian approximation to the
full posterior of x .
Model for data, given latent variable: p(y |x) = N(Ax ,P). P is diagonal
(precision of measurement).

p(x |y ,θ) ∝ p(x |θ)p(y |x) ≈ N(µ̂x|y ,θ, Σ̂x|y ,θ)

µx|y ,θ = argmaxp(x |y ,θ). Σ−1x|y ,θ fit from the curvature at the mode.
More later.
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Mixed models - Inference

Common situation that has been hard to infer effectively:

I Frequentist, θ̂: Laplace approximations or estimating equations.

I Bayesian p(θ|y): Markov chain Monte Carlo or INLA.

I Inference not enough, wish to do model criticism, outlier detection,
design, etc. Such goals require fast computational tools!



Project: Gaussian Processes

Projects

Project A: Bayesian optimization

Gaussian processes are commonly used in optimization of complex
functions.

Usually the function Y (a) is very expensive to evaluate.

Goal
â = argmaxY (a)

Example: a = (a1, a2) is decision alternative, Y (a) is profit.
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Project A: Bayesian optimization

Expected improvement:

EI = E (max{0,Y (a)− Y ∗}|Y B)

= (µ̂(a)− Y ∗)Φ

[
µ̂(a)− Y ∗

σ̂(a)

]
+ σ̂(a)φ

[
µ̂(a)− Y ∗

σ̂(a)

]

Y ∗ = max Y B

µ̂(a) and σ̂(a) are posterior mean and standard deviation, given Y B .
Φ and φ is cdf and pdf of standard Gaussian distribution.
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Project A: Bayesian optimization

Sequential optimization using expected improvement.
Repeat the following for some iterations:

I Use EI to find next best point, given current data.

I Evaluate next point.

I Augment B set with this observation.
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Project A: Spatial regression model

Model: Y (a) = β + w(a) + ε(a).

1. Y (a) response variable at alternative a = (a1, a2).

2. β trend.

3. w(a) structured GP.

4. ε(a) unstructured (independent) Gaussian measurement noise.

Use MLE to specify parameters β and θ = (σ2, φ, τ 2) from evaluation
data at nB = 100 random locations: Y B = (Y (a1), . . . ,Y (anB ))′.
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Project A: GMRF tests for a few examples

I Calculate GMRF structure. Cholesky matrix.

I Compare computational costs /gains of sparse matrices.
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