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Conditional independence via Q

All other variables than y; are denoted y_;.
Neighborhood of node i is denoted ;.
Markov assumption:

p(yily _;) = p(yily;ij € Ni)

The neighborhood structure is given by the non-zero entries in Q. This
modeling approach very popular for graphical models.
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Conditional independence via Q
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The neighborhood structure is given by the non-zero entries in Q.
The Cholesky factor is a matrix square root defined by LL' = Q.
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Conditional (ordered) independence via L
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The Cholesky factor is a matrix square root defined by LL' = Q.

It defines the conditional independence in order p(yily;;j =i+ 1,...,n).
There exists algorithms for finding the optimal order of calculation
(minimum fill-in) to maintain a sparse matrix.
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GMREF result for continuous spatial processes

» There is an explicit link between a Matern covariance function and
an Stochastic partial differential equation. (Whittle)

» This differential equation can be solved on a mesh for test functions
giving a GMRF with sparse precision matrix. (Lindgren et al.)

(5% = A)*/2x(s) = 2(s) (1)

z(s) is an independent (white noise) Gaussian process. The spatial
process x(s) is a Gaussian process with Matern covariance. The
parameters o and « relates to the covariance and smoothness in the
Matern process.
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Mesh illustration
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The result means that GPs can be computed quickly O(n*/?) for large
lattices, while still maintaining properties of the Matern process.
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Latent Gaussian models

Gaussian processes and applications

data.

Large spatial (spatio-temporal) datasets of positive variables or counts
GP is a building block.
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Latent Gaussian models

Hierarchical model

Conditionally independent data Y;, given x;, i =1,... n.
Latent variable x = (x1,. .., X,).

p(x|B,6) = W exp (—%(X — ) (x ,u)) _

Mean is E(x|3,0) = HB = p = (1, ..., tn). Positive-definite
variance-covariance matrix is

21’1 - Z]_)n

Var(x|3,0) =X =2@0)= | ... ... ... |,
To1 ... T

Z,",' = 0',-2 = Var(x,-), ):,-J = COV(X,',Xj), COI’I’(X,‘,XJ') = Z,’J/(O’,‘O’j).
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Latent Gaussian models

Examples of spatial latent Gaussian models

Rainfall data are not Gaussian, but the correlation in model parameters
can be integrated by a latent GP.
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Latent Gaussian models

Examples of spatial latent Gaussian models

Radioactivity counts: Poisson. The log intensity can be modeled as a GP.

This is a simple approach for getting multivariate distribution functions
for count data.

Rongelap Island with 157 measuremen tlocations
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Latent Gaussian models

Example of spatial latent Gaussian models
Number of days with rain for k = 92 sites in September-October 2006.
The logit probability can be modeled as a GP, getting multivariate
distribution functions for count data.

Registration sites in longitude / latitude.
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Statistical model

Consider the following hierarchical model
1. Observed data y = ()1, ..., yn) where

n

p(y | x,8) = p(y | x) = Hp(yf | X))

Often exponential family: Normal, Poisson, binomial, etc.
log p(yi|xi) = }%ﬁ + c(9,yi). b(x) canonical link.

2. Latent Gaussian process x = (X1, ..., X,)
p(x | B,0) = N[HB, Z(0)]

3. Prior for hyperparameters p(0), p(3) if Bayesian
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Mixed models - Normal linear case

Common model
> yi=HiB+vite=x+e,
» x; = H;8+ v;, vj is a structured effect.

» x; Gaussian random effect having a structured covariance model
with parameter 6. (Could be Ujix for group or individual i.)

> ¢ ~ N(0,72), iid effect.

» y; is observation. (Could be yj;, individual or group i, replicate j.
Could be only at some locations, not all.)

> (3 fixed effect. Prior p(3) ~ N(ug, Xp).

» ¢; is random (unstructured) measurement noise. ¢; ~ N(0, 72).
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Latent Gaussian models

Mixed models - marginaliztion

Can integrate out 3.

p(x16) = [ p(x|8.6)p(8)d8 = N[Hps, HE H + E(6)]
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Mixed Gaussian models - full posterior of x

Model for latent process: p(x|0) = N(u, Q) (precision formulation,
assuming (3 known),

Model for data, given latent variable: p(y|x) = N(Ax, P). P is diagonal
(precision of measurement).

p(X|y, 0) X p(X|0)p(y|X) = N(/J’x|y7 zX\y)

le 0= =Q+ APA, Zx|y obxly.0 = Qu+ A'Py.
(algebralcally equivalent with covariance forms given in earlier lectures)
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Mixed models - Gaussian approximate posterior of x

Likelihood model for data, given latent field, is Poisson, binomial, or
similar.

With non-Gaussian data one can optimize the posterior and fit a
quadratic form at the mode. This gives a Gaussian approximation to the
full posterior of x.

Model for data, given latent variable: p(y|x) = N(Ax, P). P is diagonal
(precision of measurement).

N

p(X|y,0) X p(x|0)p(y|x) ~ N(i)’x|y,07 Zx\y,@)

Hyy.0 = argmaxp(x|y, 0). ZX_DI/ o fit from the curvature at the mode.
More later.



Project: Gaussian Processes

Latent Gaussian models

Mixed models - Inference

Common situation that has been hard to infer effectively:
» Frequentist, 0: Laplace approximations or estimating equations.
» Bayesian p(@|y): Markov chain Monte Carlo or INLA.

» Inference not enough, wish to do model criticism, outlier detection,
design, etc. Such goals require fast computational tools!
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Project A: Bayesian optimization

functions.

Gaussian processes are commonly used in optimization of complex

Usually the function Y(a) is very expensive to evaluate
Goal

a = argmaxY(a)
Example: a = (a1, a2) is decision alternative, Y(a) is profit




Project: Gaussian Processes

Projects

Project A: Bayesian optimization

Expected improvement:

El = E(max{0,Y(a)— Y*}|Yg)
na v [HE YT L Tia) - Y
= ata) - vyo MG atae K55

Y* =maxYpg

fi(a) and &(a) are posterior mean and standard deviation, given Yg.
® and ¢ is cdf and pdf of standard Gaussian distribution.
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Project A: Bayesian optimization

Sequential optimization using expected improvement
Repeat the following for some iterations:

» Use El to find next best point, given current data
» Evaluate next point.

> Augment B set with this observation.
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Project A: Spatial regression model

Model: Y(a) = + w(a) + ¢(a).
1. Y(a) response variable at alternative a = (a1, a).
2. B trend.
3. w(a) structured GP.
4. ¢(a) unstructured (independent) Gaussian measurement noise.

Use MLE to specify parameters 3 and 8 = (02, ¢, 72) from evaluation
data at ng = 100 random locations: Yg = (Y(a1),..., Y(ans))"
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Project A: GMREF tests for a few examples

» Calculate GMREF structure. Cholesky matrix.

» Compare computational costs /gains of sparse matrices.
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