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Topics - Schedule
I Jan: Gaussian processes - applications and computations

(optimization of function)
I Jan: Gaussian Markov random fields (graphs and approximations of

Gaussian processes)
I Jan: Latent Gaussian models, spatial Generalized linear mixed

models
I Feb: Integrated nested laplace approximation - INLA (fast

approximate Bayesian inference, examples of GLMMs)
I Feb: Template model builder (frequentist inference, examples of

GLMMs)
I Feb: New Markov chain Monte Carlo methods (Bayesian inference,

examples of GLMMs and complex function uncertainty
quantifications)

I March: Discrete models: hidden Markov chains and Bayesian
networks calculations (forward-backward /junction tree)

I March/April: Sequential Monte Carlo methods: particle filters,
Ensemble Kalman filters.

I April: New clustering methods and dimension reduction techniques
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Motivation

Gaussian processes and applications

Gaussian processes are very commonly used in practice. Large spatial
(spatio-temporal) datasets:
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Motivation

Gaussian processes and applications

Uncertainty quantification in a diverse range of applications:

I Genetic data (dependence via ’distance’ in cells or in pedigrees)

I Functional data (dependence via ’distance’ in covariates, use this to
borrow information (smooth surface))

I Response surfaces modeling and optimization

Extremely common as building block in several machine learning
applications.
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Univariate Gaussian distribution
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Y ∼ N(µ, σ2).

p(y) =
1√
2πσ

exp

(
−1

2

(y − µ)2

σ2

)
, y ∈ R.

Z =
Y − µ
σ

, Y = µ+ σZ .

Z is standard normal, mean 0 and variance 1.
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Multivariate Gaussian distribution

Size n × 1 vector Y = (Y1, . . . ,Yn)

p(y) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(y − µ)′Σ−1(y − µ)

)
, Y ∈ Rn.

Mean is E (Y ) = µ = (µ1, . . . , µn). Positive-definite variance-covariance
matrix is

Σ =

 Σ1,1 . . . Σ1,n

. . . . . . . . .
Σn,1 . . . Σn,n

 ,
Σi,i = σ2

i = Var(Yi ), Σi,j = Cov(Yi ,Yj), Corr(Yi ,Yj) = Σi,j/(σiσj).
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Illustrations n = 2
- correlation 0.9 (left), independent (right).
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Joint for blocks

Y A = (YA,1, . . . ,YA,nA), Y B = (YB,1, . . . ,YB,nB ), joint Gaussian with
mean (µA,µB), covariance:

µ = (µA,µB), Σ =

[
ΣA ΣA,B

ΣB,A ΣB

]
,
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Observed set - non-observed set

n = 9, nA = 5, nB = 4.
A set is non-observed (black). B set is the observation set (red).
Because of the dependence (here illustrated by edges), the information
on variables in set B will propagate to set A variables.
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Conditioning

E (Y A|Y B) = µA + ΣA,BΣ−1B (Y B − µB),

Var(Y A|Y B) = ΣA −ΣA,BΣ−1B ΣB,A.

Mean is linear in conditioning variable (data).
Variance is not dependent on data.
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Illustration for n = 2, mean 0, variance 1, correlation 0.9.
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Figure: Conditional pdf for Y1 when Y2 = 1 or Y2 = −1.



Gaussian Processes

Preliminaries

Transformation

Z = L−1(Y − µ), Y = µ + LZ , Σ = LL′.

Z = (Z1, . . . ,Zn) are independent standard normal, mean 0 and variance
1.
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Cholesky factorization

Σ =

 Σ1,1 . . . Σ1,n

. . . . . . . . .
Σn,1 . . . Σn,n

 = LL′,

Lower triangular matrix

L =


L1,1 0 . . . 0
L2,1 L2,2 . . . 0
. . . . . . . . . 0
Ln,1 Ln,2 . . . Ln,n

 ,



Gaussian Processes

Preliminaries

Cholesky - example

Σ =

[
1 0.9

0.9 1

]
, L =

[
1 0

0.9 0.44

]
.

Consider sampling from joint p(y1, y2) = p(y1)p(y2|y1):

I Draw independent standard Gaussian variables Z1 and Z2 (mean 0,
variance 1).

I Sample from p(y1) by Y1 = µ1 + L1,1Z1.

I Sample from p(y2|y1) is constructed by
Y2 = µ2 + L2,1Z1 + L2,2Z2 = µ2 + L2,1

Y1−µ1

L1,1
+ L2,2Z2
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Gaussian process

For any set of time locations t1, . . . , tn. Y (t1), . . . ,Y (tn) is jointly
multivariate Gaussian.
Mean µ(ti ), i = 1, . . . , n.

Σ =

 Σ1,1 . . . Σ1,n

. . . . . . . . .
Σn,1 . . . Σn,n

 ,
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Covariance function

The covariance tends to decay with ’distance’:

Σi,j = γ(|ti − tj |),

for some covariance function γ.
Examples (distance h = |t − t ′|):

γexp(h) = σ2 exp(−φh)

γmat(h) = σ2(1 + φh) exp(−φh)

γgauss(h) = σ2 exp(−φh2)
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Illustration of covariance function

0 5 10 15 20 25 30 35 40 45 50

Distance |t-s|

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

rr
e

la
ti
o

n
Exp. corr

Matern type corr

Gauss. corr



Gaussian Processes

Processes

Illustration of samples of Gaussian processes
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Conditional formula

E (Y A|Y B) = µA + ΣA,BΣ−1B (Y B − µB),

Var(Y A|Y B) = ΣA −ΣA,BΣ−1B ΣB,A.

I Expectation linear in data.

I Variance only dependent on data locations, not data.

I Expectation close to conditioning variables near data locations, goes
to µA far from data.

I Variance small near data locations, goes to ΣA far from data.

I Close data locations are not double data.
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Illustration of conditioning in Gaussian processes
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Application of Gaussian processes: function optimization

Several applications involve very time-demanding or costly
experimentation, or tedious computer simulations.
Typical question: Which configurations of inputs give highest output?
Goal is to find the optimal input without too many trials / tests, because
they cost so much.

Approach: Fit a GP to the output function, with ’distance’ between
inputs. Train GP model from the evaluation points and results. This
allows fast consideration of which evaluation points to choose next, based
on large predictions or high uncertainty!
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Application : optimal vessel fleet mix for offshore
wind-farm operation
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Application : optimal vessel fleet mix for wind-farm
operation

I More vessels is better because easier to do repair and maintenance.

I More vessels is worse because it costs more to operate.

I The ’price’ of each combination of large/small vessels takes a long
time to evaluate (using a simulator model with various weather and
waves inputs along with Poisson process failures).

I Approach: Fit a GP to the profit function, for different input
variables (number of different ships available, number of various
personnel) based on some evaluation points and results. Run
batches of simulations, to iteratively find the optimum giving the
best combinations of inputs.
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Application : optimal vessel fleet mix

Fitted mean (left) and variance (right) after some batches of iterations.
The selection of evaluation points is done by Expected Improvement,
which has a closed form expression for Gaussian process models.
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Simplified example - Production quality

Goal: Find the best temperature input, to give optimal production.
Which temperature to evaluate next? Experiment is costly, want to do
few evaluations.
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Expected improvement

Maximum so far Y ∗ = max(Y ), Y = (Y1, . . . ,Yn).

EI (t) = E (max(Y (t)− Y ∗, 0)|Y )
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Sequential uncertainty reduction

Perform test at t = 40, result is Y (40) = 50.
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Sequential uncertainty reduction and optimization

Maximum so far Y ∗ = max(Y ,Yn+1).

EIn+1(t) = E (max(Y (s)− Y ∗, 0)|Y ,Yn+1)
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Project on function optimization using EI next week

Analytical solutions to parts of computational challenge:

EI =

∫ ∞
−∞

max {0, v − v∗} p(v)dv =

∫ ∞
v∗

(v − v∗)p(v)dv

=

∫ ∞
v∗

vp(v)dv − v∗
∫ ∞
v∗

p(v)dv

=

∫ ∞
v∗−m

s

(m + sz)p(z)dz − v∗
∫ ∞

v∗−m
s

p(z)dz

= sφ(z) + (m − v∗)Φ(z),

Relies on Gaussian standard density (φ(z)) and cumulative function
(Φ(z)).
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