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Markov chain Monte Carlo

MCMC uses dependent samples to do Monte Carlo approximations.
Idea: Construct a Markov chain that converges to the target distribution
π (density or probability mass function). Then take sample averages.
The first (transient) part (called burn-in) is discarded in the sample
averages because it is would be biased from the initial state.
There are two main algorithms.

I Gibbs sampling.

I Metropolis-Hastings sampling.
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Metropolis-Hastings algorithm

(Assuming discrete state-space S , but works generally.)

I Initialize x0.

I Iterate the following b = 1, . . . ,B:

1. Sample U ∼ U(0, 1)
2. Propose a new potential state x∗, from proposal distribution

P(x∗ = j |xb−1 = i) = Qij , j ∈ S .

3. Compute the acceptance probability: αij = min
(
1,

πj

πi

Qji

Qij

)
4. Set xb = x∗ = j if U < αij . Else set xb = i .

We are free to choose Qij . This gives enormous flexibility! The art is to
select this wisely!
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Random walk MH

Target density π(x).
MH algorithm

I Initiate x0 = (x01 , x
0
2 ), b = 0.

I Iterate while b < B,

1. Sample x∗ ∼ N(xb, σ2I )
2. Accept xb+1 = x∗ with probability α = min

{
1, π(x∗)

π(xb)

}
Else set xb+1 = xb.

3. b = b + 1

The symmetric proposal density cancels in the acceptance rate. Very easy
to implement. Asymptotically optimal (under some assumptions) to have
acceptance rate about 0.23.
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Langevin MH

Langevin: q(x |xb) = N(xb + σ2

2 ∇ log π(xb), σ2I ).
Langevin MH algorithm

I Initiate x0 = (x01 , x
0
2 ), b = 0.

I Iterate while b < B,

1. Sample x∗ ∼ q(x |xb)

2. Accept xb+1 = x∗ with probability α = min
{
1, π(x∗)q(xb|x∗)

π(xb)q(x∗|xb)

}
Else set xb+1 = xb.

3. b = b + 1

Only requires tuning of σ. Asymptotically optimal (under some
assumptions) to have acceptance rate about 0.57.
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Mixing of the MCMC sampler

MCMC gives dependent samplers from the density or probability mass
function π.
If the dependence (autocorrelation) is very large, the Markov chain is said
to mix slowly, and it takes a very long time to explore the sample space
adequately.
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Autocorrelation in the MCMC sampler

Integrated autocorrelation:

IAC = 1 + 2
2T+1∑
t=1

ρ̂t , ρ̂t = ˆCorr(xs , xs+t),

T = max(τ ; ρ̂2t + ρ̂2t+1 > 0 for all t ≤ τ)

Effective sample size, N is number of dependent samples in chain:

ESS =
N

IAC
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Mixing vs evaluation of the MCMC sampler

Note: The number of evaluations (M) increases with the complexity of
the target density per iteration (derivatives? or second derivatives?).
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Looking for smart proposals that explore the sample space
quickly

I Auxilliary variables.

I Use of derivatives of the target distribution.

I Hamiltonian MH.
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Auxiliary variables in MH - hit and run

One iteration of hit-and-run.

I Draw a direction.

I Sample length along direction. (This defines proposal.)

I Accept or reject move with MH rate.

(Could be better than Gibbs sampling if directions are sampled wisely,
and reasonable accept probability, which depends on the chance of
getting back from x∗ to x .)
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Auxiliary variables in MH - slice sampling

One iteration of slice sampling.

I Draw a level at the density axis u ∼ U(0, π(xb)).

I Sample a variable that has a least this density level,
x ∼ U(x : π(xb+1) > u).

(Can induce large steps in sample space, much larger than Gibbs
sampling, if possible to sample at a level of the density.
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Illustration slice sampling
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Uniform sampling - slice sampling

π(x , u) = U[(u, x); u < π(x), x ∈ Sx ]

π(x) =

∫ π(x)

0

1du = π(x)

(Can also show invariance of resulting Markov chain.)
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Hamiltonian MH

Combines the following:

I Uses an auxiliary variable (momentum) to improve mixing.

I Uses derivatives (Hamilton’s differential equation).

I Naturally inspired from physics (energy).
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Movement for Hamiltonian MCMC

Goal is to explore the key parts of the distribution effectively!
Large moves, efficient mixing of Markov chain.
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Hamiltonian MH

z is momentum.
Hamiltonian function

H(x , z) = V (x) + K (x , z)

Joint distribution: π(x , z) = exp(−H(x , z)).
π(z |x) ∝ exp(−K (x , z)) is kinetic energy, V = − log π(x) is potential
energy.
One can choose K (x , z), usually Gaussian;

K (x , z) = log |M(x)|+ 1

2
z ′M(x)−1z

(Independent of x if M(x) = M.)
This is symmetric for z and −z .
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Hamiltonian Diff eq

Langevin equation is a Stochastic differential equation:

dx
dt

= ∇ log π(x) +
√

2Bt

(Solution to this is x ∼ π(x).)
Because exact solutions are not possible, one uses a MH sampler and
accept-reject random proposals.

Hamilton’s equation defines a deterministic differential equation:

dx
dt

=
dH

dz
=

dK

dz
,

dz
dt

= −dH

dx
= −dK

dx
− dV

dx

With solution x ∼ π(x). (marginally, when ignoring the auxiliary
momentum variables.)
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Hamiltonian exact

x ∼ N(0, 1), z |x ∼ N(0, 1).

V (x) = x2/2, K (z |x) = z2/2,

dx

dt
= z ,

dz

dt
= −x

x(t) = r cos(a + t), z(t) = −r sin(a + t)

For most systems Hamilton’s equations cannot be solved like this.
Instead discrete-time numerical integrators are used.



Hamiltonian Markov chain Monte Carlo

Leapfrog proposal MH

Leapfrog is the most popular method to propagate Hamiltonian dynamics
to a proposal. (In the class of symplectic integrators)

Start by x = x0, z = z0.
For i = 0, 1, . . . ,T/ε,

I z i+1/2 = z i − ε
2
dV
dx (x i )

I x i+1 = x i + εz i+1/2

I z i+1 = z i+1/2 − ε
2
dV
dx (x i+1)

Tuning parameters are ε and T .
(There are adaptive heuristic methods for setting T and ε; NUTS
(No-Uturn sampling. ))
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Illustration Hamiltonian eq

(From Neal, 2013)
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Illustration path : N2(0,Σ)
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Illustration of Hamiltonian

(Neal 2013)
Hamiltonian does not change during leapfrog steps. (But state and
momentum changes.)
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Mathematics of path for : N2(0,Σ)

Start by x = x0, z = z0.
For i = 0, 1, . . . ,T/ε,

I z i+1/2 = z i − ε
2Σ−1x i

I x i+1 = x i + εz i+1/2

I z i+1 = z i+1/2 − ε
2Σ−1x i
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Hamiltonian MH algorithm

Start by x = x0, z = z0, b = 0,
Iterate the following:

I Set x = xb.

I Propose z |x ∼ exp(−K (x , z)).

I Run leapfrog Hamiltonian dynamics for T/ε steps to get proposal
(x∗, z∗).

I Calculate acceptance probability α = min
[
1, π(x

∗)
π(xb)

]
I Accept xb+1 = x∗ if U < α, else set xb+1 = xb.

(Proposal cancels because of symmetry in leapfrog dynamics and
z = −z .)
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Illustration MH proposal path

(From Betancourt, 2013)
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Illustration mixing

(From Neal, 2013)
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Pros and cons of Hamiltonian MC

I Makes large jumps in the target density. Good mixing.

I Natural proposal - motivated by Diff Eq, geometry and physics

I Code exists (NUTS, Stan) for efficient implementation.

I Depends on time required to get derivatives.

I Not obvious how to tune (improve) proposal for momentum z .

I Still struggles with difficult targets (multimodal densities, ridge
densities).

Effective sample size is usually large for Hamiltonian MH.

ESS =
N

IAC

(Could scale this with evaluation cost per iteration, which is larger when
derivatives are required.)


