
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

M
as

te
r’s

 th
es

is

Espen Bjørge Urheim

Solving Former with Machine
Learning Techniques

Master’s thesis in Applied Physics and Mathematics
Supervisor: Jo Eidsvik
June 2025

Espen Bjørge Urheim

Solving Former with Machine Learning
Techniques

Master’s thesis in Applied Physics and Mathematics
Supervisor: Jo Eidsvik
June 2025

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

ABSTRACT

In this thesis, we applied modern machine learning techniques to solve Former , a single-
player puzzle by NRK (2024). A game of Former consists of a 9 × 7 grid containing 4
repeating shapes. At each turn, the player removes one cluster of identical shapes, and the
purpose is to clear the board in as few moves as possible. Through the use of self-made
heuristics, supervised learning on self-generated data, and Proximal Policy Optimization,
we found effective, though not perfect, strategies for solving the game. To handle the
imperfections, we incorporated them in Monte Carlo Tree Search and beam search to
efficiently search for solutions to Former boards.

Through the combination of machine learning approaches and search techniques, we
achieved the best score among any player in Norway on most official boards published
by NRK within a short time limit. Across all strategies and search techniques used, we
found the best-known solutions to 73% of boards in less than a second and 98% of boards
in less than a minute, outperforming any other model previously made, to the best of our
knowledge.

i

ii

SAMMENDRAG

I denne masteroppgaven brukte vi moderne maskinlæringsteknikker for å løse Former ,
et enspillerspill laget av NRK (2024). I Former møter spilleren et 9 × 7 rutenett fylt
med fire unike former. For hvert trekk fjerner spilleren én klynge av identiske former, og
målet er å fjerne alle fra brettet på færrest mulig trekk. Gjennom bruk av egenutviklede
heuristikker, veiledet læring på egengenererte data og “Proximal Policy Optimization”
fant vi gode, men ikke perfekte, strategier for å løse spillet. Siden strategiene ikke var
perfekte, integrerte vi dem i Monte Carlo-tresøk og strålesøk for å søke etter løsninger på
Former -brett.

Ved å kombinere maskinlæringsalgoritmer og søketeknikker oppnådde vi de beste
resultatene i Norge på offisielle brett publisert av NRK. På tvers av alle strategier og
søketeknikker fant vi de beste løsningene på 73% av brettene på under ett sekund og
98% av brettene på under ett minutt, et resultat som, så vidt vi vet, overgår alle andre
modeller som har blitt laget for å løse Former .

iii

iv

PREFACE

This thesis concludes my Master’s degree in Applied Physics and Mathematics. I would
first like to thank my supervisor, Jo Eidsvik, for coming up with the brilliant idea of solving
Former as a machine learning project, for taking the time to assist me and showing great
interest in my work, and of course, for his expertise. Thanks to him, I got to do the type
of mathematics that interests me the most, on a fun problem that many of my classmates
envied me for. Second, I want to thank Matteland, the greatest country in the world, and
all my co-students who have spent hours there over the past few years. I hope to return
to do some more mathematics in the future.

Espen Bjørge Urheim
Trondheim, June 2025

v

vi

CONTENTS

Abstract i

Sammendrag iii

Preface v

1 Introduction 1
1.1 Problem Description . 1
1.2 Main Contributions . 2

1.2.1 Contributions to Sustainability . 3
1.3 Structure of Thesis . 3

2 The Former Game 5
2.1 Rules and Glossary . 5
2.2 Game Exploration . 5

2.2.1 Gameplay Examples . 7
2.2.2 Descriptive Statistics . 7
2.2.3 Important Properties . 10

2.3 Mathematical Problem Formulation . 10
2.3.1 Markov Decision Processes . 11
2.3.2 Formal Problem Statement . 11

3 Machine Learning Background 13
3.1 Neural Networks . 13

3.1.1 Building Blocks . 14
3.1.2 Training a Neural Network . 17

3.2 Supervised Learning . 19
3.2.1 Data . 19
3.2.2 Objective Functions . 19
3.2.3 Evaluation Metrics . 21
3.2.4 Hyperparameter Tuning with Bayesian Optimization 21

3.3 Proximal Policy Optimization . 23
3.3.1 Dynamic Programming . 24
3.3.2 PPO as an Approximate Policy Iteration 25

vii

CONTENTS viii

4 Search Techniques 29
4.1 Former as a Tree Search Problem . 29
4.2 Monte Carlo Tree Search . 30
4.3 Beam Search . 34

5 Methodology 37
5.1 Code Implementation and Daily Board Acquisition 38
5.2 Self-made Heuristics . 39
5.3 Supervised Learning . 40

5.3.1 Data Generation . 40
5.3.2 Neural Network Architectures . 42
5.3.3 Hyperparameter Tuning . 43
5.3.4 Training and Validation . 44
5.3.5 Evaluation . 44

5.4 Proximal Policy Optimization . 45
5.4.1 Actor-critic Network Architecture 45
5.4.2 Hyperparameters and Reward Shaping 46
5.4.3 Training . 47
5.4.4 Evaluation . 48

5.5 Search Techniques . 48
5.5.1 MCTS Implementation Details . 48
5.5.2 Beam Search Implementation Details 49
5.5.3 Evaluation . 49

6 Results and Discussion 51
6.1 Self-made Heuristics . 51
6.2 Supervised Learning . 52

6.2.1 Hyperparameter Tuning . 53
6.2.2 Training and Validation . 54
6.2.3 Evaluation . 58

6.3 Proximal Policy Optimization . 60
6.3.1 Training . 60
6.3.2 Evaluation . 62

6.4 Search Techniques . 64
6.4.1 Performance on Random Boards . 65
6.4.2 Performance on Daily NRK Boards 66

7 Conclusions 73
7.1 Concluding Remarks . 73
7.2 Future Work . 74

References 75

A Distribution of Shapes in the Daily Boards 79
A.1 Hypothesis Test on the Uniform Assumption 79
A.2 Hypothesis Test on the Noncorrelation Assumption 80

CONTENTS ix

B GitHub Repository 81
B.1 GitHub Repository Link . 81
B.2 Play Former with Solver Recommendations 81

CONTENTS x

CHAPTER

ONE

INTRODUCTION

1.1 Problem Description
In the past few years, daily puzzles have become a global phenomenon. Among the most
well-known examples are Wordle by the New York Times (2022), Spotle by Flatwhite Stu-
dios (2024), and Queens by LinkedIn (2024). A perhaps lesser-known example is Former
(Norwegian for “shapes”), released by the Norwegian Broadcasting Company (NRK, 2024).
In a Former puzzle, players are given a 9×7 board filled with four repeating shapes (Fig-
ure 1.1). For each move, players remove a single cluster of identical shapes, and the goal is
to clear the board in as few moves as possible. Building larger groups allows them to clear
several shapes at once, but this comes at the cost of spending extra moves on building
those clusters, which encourages strategic play. The simplicity of the game, combined with
the competitive aspect of solving the daily puzzle in fewer moves than everyone else, has
caused Former to quickly grow in popularity among Norwegians, attracting presumably
thousands of players every day.

Figure 1.1: The Former board published by NRK on June 1st 2025.

Strategic games with a competitive aspect are prime targets for machine learning mod-
els. For very small games, where the entire state space can be stored in memory, pure

1

CHAPTER 1. INTRODUCTION 2

search techniques alone are sufficient. Russell and Norvig (2016) demonstrate this by
solving Tic-Tac-Toe optimally with minimax. As the state space of the game grows, how-
ever, exhaustive search is infeasible, and the search must be guided by heuristics. Schadd
et al. (2008) demonstrate this on the larger single-player puzzle SameGame, where Monte
Carlo Tree Search (MCTS) combined with game-specific heuristics found good solutions
despite the state space being too large for full exploration. For games with astronomically
large state spaces, even heuristics struggle to correctly rank moves. For these purposes,
self-made heuristics are outperformed by machine-learned strategies: Silver et al. (2018)
combined reinforcement learning with MCTS to create AlphaZero, which beat any other
player in Go, Chess and Shogi, both humans and machines.

Beyond games themselves, search techniques guided by machine-learned strategies
have impact on academic research across areas such as numerical linear algebra and struc-
tural biology. Although games are often designed for entertainment, the algorithms used
to master them have proven remarkably transferable to scientific problems. For example,
the ideas first developed with AlphaZero have since been extended to AlphaTensor, which
recently discovered more efficient matrix-multiplication algorithms (Fawzi et al., 2022),
and to AlphaFold, which has revolutionized protein structure prediction (Jumper et al.,
2021). Thus, although Former is primarily an entertainment puzzle, developing machine
learning-based methods to solve it contributes to the broader field of modern machine
learning research.

In terms of state space complexity, Former can be categorized as a large state space
game. On a typical initial board, the branching factor is around 36 possible moves, and
there are typically more than 1021 possible combinations of the first 15 actions. Although
this state space is far too large for exhaustive search, Odland (2024) demonstrated that
search techniques guided by self-made heuristics can solve many Former boards. However,
these heuristics alone struggle to generalize across all boards, and they may require tens
of minutes of searching on the hardest puzzles. To address this gap, this thesis develops
hybrid solvers that combine search techniques with modern machine learning approaches.
First, we design a set of simple heuristics that are used in combination with beam search
to generate expert data. Then, we use supervised learning techniques to train convolu-
tional policy and value networks on this expert data, to predict promising moves and
estimate remaining move counts. In addition to this, we use a state-of-the-art reinforce-
ment learning technique, Proximal Policy Optimization (PPO) (Schulman et al., 2017), to
learn strategies through trial and error by playing several million games of Former . Once
we have trained policy and value networks using these two approaches, we combine them
with MCTS and beam search to efficiently look for solutions to Former boards. Finally,
we compare our solvers with each other, both on randomly generated data and on official
NRK test boards. By combining modern machine learning with search techniques, we
aim to find the best-known solutions to daily boards published by NRK in less than a
minute of searching.

1.2 Main Contributions
With this thesis, we provide the following main contributions:

• Novel Former solvers: We create 16 solvers in total, 12 of which are based
on modern machine learning techniques: 6 that combine MCTS with supervised
learning-based policy networks and PPO-based actor networks, and 6 that combine

CHAPTER 1. INTRODUCTION 3

beam search with supervised learning-based value networks and PPO-based critic
networks. These solvers are used to efficiently find solutions to Former boards.

• Code database: We provide code implementation of Former in C++, and Python
code for all other components of our solvers. Furthermore, we provide a user inter-
face (see Appendix B.2) that allows anyone to play on any of the 100 official Former
boards that we have stored throughout the work on this thesis, with solver recom-
mendations. The code is available from the GitHub repository in Appendix B.1,
along with a README file that provides further instructions.

1.2.1 Contributions to Sustainability

Solving Former with machine learning techniques contributes to the United Nations Sus-
tainable Development Goals (SDGs), albeit indirectly (United Nations, 2015). Here, we
highlight a few SDGs, and explain how our work can be considered a contribution to each
of them.

• SDG 4: Quality Education. We provide a well-documented, open-source code
database, which educational institutions, students, researchers or anyone else can
use for educational purposes. The work provides explanations and examples of
formulating sequential decision-making problems as Markov Decision Processes, de-
signing game heuristics, the use of supervised and reinforcement learning to train
policy and value networks, and more. This can be considered a contribution to
quality education.

• SDG 9: Industry, Innovation and Infrastructure. Although solving Former is
not a contribution to industry or infrastructure, applying machine learning models
to new and entertaining problems stimulates innovation, which is an important part
of sub-target 9.5.

• SDG 17: Partnerships for the Goals. By publishing our code, data, and
pretrained models as open-source information, we encourage collaboration among
researchers, educators, and practitioners. This contributes to sub-target 17.6 (“en-
hance [...] cooperation on and access to science”) (United Nations, 2015, “Goal 17”
section) by making our methods and results freely available for others to continue
the work.

1.3 Structure of Thesis
The thesis is divided into the following chapters:

• Chapter 2 gives a proper introduction to Former , where we explain the rules, show
gameplay examples, and analyze some interesting properties of the game.

• Chapter 3 provides the background theory of machine learning that is relevant for
our approach to solving Former .

• Chapter 4 introduces the core principles of search techniques, along with the two
algorithms that we use: MCTS and beam search.

CHAPTER 1. INTRODUCTION 4

• Chapter 5 presents our methodology, where we explain how we combine modern
machine learning techniques with search algorithms to solve Former boards.

• Chapter 6 displays our results, where we compare our models and solvers to each
other and to the best solutions found by any player in Norway.

CHAPTER

TWO

THE FORMER GAME

Former is a single-player puzzle made by the Norwegian Broadcasting Organization, NRK
(2024). Similar to other popular puzzles such as Wordle by the New York Times and
Queens by LinkedIn, NRK publishes a new puzzle on their webpage every day. Along
with it, they reveal the best score that anyone has achieved that day, encouraging players
to obtain the best score possible. Our goal in this thesis is to create a solver that can take
any board published by NRK as input, and find the best-known solution in less than a
minute of searching. Before we dive into how this is done, we need a proper introduction
of the game itself. This is the purpose of this chapter.

We first define the rules of Former and establish the terminology used throughout
the thesis in Section 2.1. Thereafter, in Section 2.2, we explore some gameplay exam-
ples, analyze interesting game statistics, and highlight two key properties of the game.
Finally, in Section 2.3, we introduce the notation and state the problem of solving Former
mathematically.

2.1 Rules and Glossary
A Former puzzle consists of a 9×7 grid, or a board, where each point in the grid contains
one of four simple shapes. The goal of the game is to remove all the shapes from the
board using a minimum of actions. One action consists of clicking on one of the existing
shapes on the board, which removes that shape and all identical ones that are connected
to the original shape. After a group has been removed, all columns collapse downward
and fill in the empty gap of the removed group. An example of an initial board, an action
that causes the removal of a group, and the following collapse of all columns is shown in
Figure 2.1.

To describe aspects of the game, we use a variety of terms. For convenience, we
therefore include a glossary (Table 2.1) with synonymous terms and the corresponding
explanations.

2.2 Game Exploration
To get insight into how Former is played, we include two different gameplay examples on
the board published by NRK on March 17th 2025. After these, we study the distribution of
shapes in official Former boards and approximate the exponential growth in the number

5

CHAPTER 2. THE FORMER GAME 6

(a) An initial board (b) Choice of group (c) Board after action

Figure 2.1: (a) An initial board in the Former game. (b) If we click on any shape in
the highlighted group, that group is removed and the columns collapse, leading to (c) a
new board (NRK, 2024).

Shape / color / grid point In the official board by NRK, there are 4 shapes, each
with a corresponding color.

Group A set of identical shapes that are connected to each
other and form a cluster.

State / board / grid The configuration of shapes. The standard board size
is 9× 7.

Action / move / turn The process of clicking on a group of shapes, as illus-
trated in Figure 2.1.

Agent / player The individual playing the game. We often use agent
when referring to a machine.

Model An agent used to make predictions based on a given
board. Models are either self-made heuristics or neural
networks.

Solver A search technique combined with a self-made heuris-
tic or neural network, that solves a board through
strategic search based on the incorporated model.

Table 2.1: The terminology used to describe aspects of Former .

CHAPTER 2. THE FORMER GAME 7

of action combinations. Finally, we explain two important properties of the game which
are crucial for the choice of methodology.

2.2.1 Gameplay Examples

The first gameplay example shows optimal play, according to the best-known solution in
Norway. That is, it clears the board in the fewest known number of moves possible. The
second is an example of suboptimal play following a greedy strategy.

The best-known solution of the board published by NRK on March 17th used 11 moves.
An example of such a solution is displayed in Figure 2.2. An interesting insight from this
gameplay is that the best-known solution starts with removing smaller groups in order
to create larger ones that can be removed at later times. For example, in the four first
displays in the top row of Figure 2.2, smaller groups were removed to create one large
group of orange shapes. This large group is then removed in the fifth action.

Figure 2.2: Example of optimal play according to the best-known solution of the board
from NRK on March 17th 2025. After the board is cleared, we are congratulated on
achieving the best result in Norway. Statistics such as the most common score of all
players (15 moves) and the current personal playing streak (6 days) are also shown.

In Figure 2.3, we show an example of suboptimal play, that is, a play-through that uses
more moves than the best-known solution. For illustration purposes, we use the greedy
strategy of always removing the largest group on the board. This causes many shapes
to be removed during the first few steps, but leaves plenty of smaller groups towards the
end, resulting in a total of 22 actions used to clear the board. This example illustrates
how a poor choice of strategy may lead to a surprisingly large increase in the number of
moves used to clear the board compared to optimal play.

2.2.2 Descriptive Statistics

We explore Former further by analyzing some interesting statistics of the game. First,
we investigate how NRK generates the official Former boards, before we generate boards
ourselves and study the branching factor of possible actions.

In Figure 2.4 we show the distribution of shape counts for each of the four shapes,
based on 100 daily boards published by NRK. We observe that the distributions are quite
similar, with nearly equal means and comparable standard deviations. There are some

CHAPTER 2. THE FORMER GAME 8

· · ·

Figure 2.3: Example of suboptimal play following a greedy strategy on the March 17th

2025 board from NRK. The strategy used 22 moves.

outliers, especially for the orange shapes, but this is to be expected from a relatively small
set of 100 boards. Overall, the comparable distributions suggest that NRK sample from
a discrete uniform distribution when generating their daily boards. For the remainder
of this thesis we assume this to be the case, and use a uniform distribution to generate
boards ourselves. Due to the importance of this assumption, however, we also perform
hypothesis tests to validate it. To keep this section concise, we put the hypothesis tests
in Appendix A.

Next, we analyze the size of the action space of Former . We begin by generating 1 000
random initial boards, where each of the 9 × 7 cells is assigned one of the four shapes
by sampling from a discrete uniform distribution. For each board, we then simulate 20
random playouts of length 15 moves. During each playout, at move depth t ∈ {0, 1, . . . , 15}
we record the branching factor G(st), that is, the number of groups on the board. Pooling
over all boards and playouts gives us a large sample of branching-factor values at each
depth. From these samples we compute the 10th, 50th (median), and 90th percentiles at
each t. Finally, we take the cumulative product of the medians,

Bt =
t∏

i=0

median(G(si)),

to estimate the total number of possible action sequences up to depth t. We plot Bt

along with the 10th and 90th percentiles, shown in Figure 2.5. Here, we observe the
exponential growth in the number of possible action combinations as a game progresses.
In an initial board, the median number of possible moves is B0 = 36, and the total number
of combinations typically exceeds 1021 after 15 moves.

It is important to note that, in these calculations, we have not taken into account
sequences of actions leading to the same state, which we call state collisions. For example,
from the first board of Figure 2.3, it does not matter whether we click top left and then top

CHAPTER 2. THE FORMER GAME 9

Pink Blue Green Orange
Shape

5

10

15

20

25

C
ou

n
t

p
er

b
oa

rd

Distribution of shape counts over 100 daily boards

Figure 2.4: The observed distributions of number of shapes, based on 100 daily boards
saved from the website of NRK. The middle horizontal lines are the average number of
each shape across all boards, whilst the upper and lower lines are the maximum and
minimum observed counts, respectively.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Move depth (t)

103

106

109

1012

1015

1018

1021

1024

N
u

m
b

er
of

p
os

si
b

le
ac

ti
on

se
q
u

en
ce

s

B0 = 36

Exponential growth in action combinations in Former

Median combinations

10th percentile

90th percentile

Figure 2.5: The median number of possible action sequences after t moves, along with
the 10th and 90th percentiles. The values are estimated empirically based on 20 000 random
playouts over 1 000 randomly generated boards. The median number of possible moves
from an initial board is B0 = 36.

CHAPTER 2. THE FORMER GAME 10

right, or top right and then top left: both choices lead to the same state. As a result, the
branching factor is in reality smaller than suggested by Figure 2.5. Based on simulations
over 10 000 boards, we found that on average 41% of the possible combinations of two
actions from an initial board lead to a state collision, suggesting that the state space in
theory can be reduced by almost half. However, in practice, there is no easy way to perform
this state space reduction due to the particular dynamics of the Former game: removing
a group may completely alter other groups, hence we cannot tell what combinations of
actions lead to a state collision without first performing the actions and then comparing
the new state to all previously explored states. It is simpler and more computationally
efficient to explore the full search space to begin with and not to bother reducing it to
its minimal theoretical size. Thus, although we acknowledge that the branching factor in
reality is smaller than illustrated in Figure 2.5, this is the branching factor that we are
working with in practice.

2.2.3 Important Properties

There are in particular two properties of the Former game that are important. Firstly, it
is deterministic and, secondly, as discussed, it has a very large state space. In this section,
we explain both properties and study how they affect the choice of methodology.

Former is a deterministic game, which means that all the information needed to
find the best action given some state is available to the player at all times. There is no
randomness involved in an action, and there is no opponent to play against. Consequently,
when performing an action, the player can deduce what the next board will look like, what
the one thereafter will look like, and so on. As a result, it is theoretically possible to find
the shortest sequence of actions to clear the entire board once the initial board is revealed.

Despite being deterministic, it is in practice impossible to solve Former by testing all
possible combinations of actions due to the large state space of the game. As we observed
in Figure 2.5, after d = 15 moves of random search, there are approximately 1021 possible
combinations of actions to discover. Consequently, it is not feasible to explore the entire
state space in order to find the optimal solution.

Many other well-known games are deterministic but still extremely difficult to solve
due to large state spaces. Multiplayer examples include Go and Chess, with approximate
average branching factors of 35 (Shannon, 1950) and 250 (Silver et al., 2016), respec-
tively. Single-player games include the 15-puzzle and Rubik’s Cube, the latter having
an approximate branching factor of 13 (Korf, 1997). To handle games with large state
spaces, combinations of clever search algorithms and machine learning techniques have
proven useful. For example, DeepCubeA combines A∗ search with deep neural networks
to solve any initial configuration of Rubik’s Cube (Agostinelli et al., 2019). Due to the
somewhat comparable traits of Former , we hypothesize that we can use similar methods
for our purpose.

2.3 Mathematical Problem Formulation
The purpose of Former is to find the shortest sequence of actions to clear some initial
board. This makes it a sequential decision-making problem. A common framework for
such problems is a Markov decision process (MDP), where we model each play-through as
a sequence of board states and actions, with each action leading to a new state according
to some transition function. The main assumption underlying the MDP framework is that

CHAPTER 2. THE FORMER GAME 11

the probability of transitioning from one state to another depends only on the current
state and the current action performed by the player (Puterman, 1990), which is the case
for Former . In Section 2.3.1 we define the components of the MDP, and in Section 2.3.2
we state the formal optimization problem for solving the game.

2.3.1 Markov Decision Processes

We model each play-through of Former as an episodic, deterministic MDP with a finite
horizon. An episode begins at the initial board s0 ∈ S and terminates at the first time
step T where all shapes are removed. Formally, the MDP we use to model the game is
the tuple

(S, {As}s∈S , P, R, γ, T) ,
where:

• The state space S is the set of all possible 9× 7 board configurations.

• The action space for a given state s is As = {1, . . . , G(s)}, where G(s) is the number
of groups, and thus also the number of unique actions, in state s. If the board is
empty, we have reached the terminal state sT , and the action space is the empty
set, AsT = ∅.

• The transition probability P (s′ | s, a) is deterministic, and given by

P (s′ | s, a) =
{
1 if s′ = τ(s, a),

0 otherwise.

Here, τ(s, a) is the transition function, which removes the group belonging to point
a in s and collapses the columns, leaving us in s′.

• The reward function R(s, a) = −1 is meant to penalize each move equally.

• We set the discounting factor γ to one, so that the total return from one play-through
is defined as

G0 =
T−1∑
t=0

R(st, at) = −T, (2.1)

and maximizing G0 is equivalent to minimizing the number of moves.

• The horizon T is the (random) number of moves until the board is cleared.

2.3.2 Formal Problem Statement

Let π be a decision-making strategy, or a policy,

π : S ×As → [0, 1], π(a | s) ≥ 0,
∑
a∈As

π(a | s) = 1 ∀s ∈ S.

That is, π gives the probability of choosing a specific action given some state. For ease
of notation, we let

π(s) = {π(a | s)}a∈As

CHAPTER 2. THE FORMER GAME 12

denote the probability distribution over all possible actions from state s. Under π, at
each step t the agent samples

at ∼ π(st), st+1 = τ(st, at).

Then, solving Former means that we find the policy that maximizes the expected return
from any state s,

π∗(s) = argmax
π

Eπ

[
G0 | s

]
= argmin

π
Eπ

[
T | s

]
,

where Eπ[·] denotes the expectation given that the agent acts according to π. Or, equiv-
alently, solving Former can be stated as finding the optimal value function v∗ : S → R,
which gives the number of moves remaining if the agent acts according to the optimal
policy,

v∗(s) = min
π
Eπ[T | s].

In practice, it is impossible to find π∗ and v∗. Therefore, we approximate them and
handle the approximation flaws by incorporating them in search techniques. Thus, our
pipeline for solving Former consists of two steps:

1. Approximate π∗ and v∗.

2. Combine the approximations with search techniques to cleverly look for solutions
to a given Former board.

In the next two chapters, we introduce the theory used for the two respective steps. First,
in Chapter 3, we develop the fundamentals of machine learning that we use to approximate
π∗ and v∗. We also use self-made strategies for this purpose, but these do not require
much theory, so we introduce these in the context of the specific methodology. Then,
in Chapter 4, we turn our attention to search techniques and how these combine with
approximate policy and value functions. Once the proper fundamentals are established,
we return with an in-depth explanation of the two-step methodology in Chapter 5.

CHAPTER

THREE

MACHINE LEARNING BACKGROUND

Recall that solving Former can be defined as finding an optimal policy function π∗ or an
optimal value function v∗. One way to approximate these is to identify strategies ourselves,
which we call self-made heuristics, and then define policy and value functions based on
them. Although such heuristics often perform well in solving single-player games, they
may not be generalized across all boards and may lead to significant runtime (Browne
et al., 2012). A more systematic alternative is to learn strategies from data using machine
learning techniques, specifically by training deep neural networks.

In this chapter, we develop the theoretical foundations for two approaches to learn a
strategy from data: supervised and reinforcement learning. Supervised learning is based
on labeled data that directly indicate the correct action or number of moves remaining for
a given state, whereas reinforcement learning finds strategies by itself through trial and
error. The goal with both approaches is to obtain neural networks that approximate π∗

and v∗, which we later use in search techniques to efficiently look for solutions to Former
boards.

We start by introducing neural networks in Section 3.1, with a focus on the network
architectures that we use and how networks are trained. Then, in Sections 3.2, we develop
the core principles of supervised learning, and finally, in Section 3.3, we provide the theory
for the reinforcement learning algorithm that we use: PPO.

3.1 Neural Networks
Mathematically, a neural network is a function,

f = f(x;θ),

which depends on a set of parameters θ. The purpose of the network is to approximate
some other function,

f ∗ = f ∗(x),

which we do by tuning θ so that f approximates f ∗ as accurately as possible. Here, x ∈ X
denotes the tensor representation of a state s, which is what we in practice feed into the
neural network. For consistency, we introduce the mapping ψ : S → X, which gives a
one-to-one relationship between the state s and the tensor representation,

x = ψ(s) ⇔ ψ−1(x) = s.

13

CHAPTER 3. MACHINE LEARNING BACKGROUND 14

Then, for ease of interpretation, we write f(s;θ) to denote the evaluation of state s using
the neural network, with the understanding that f(s;θ) ≡ f(ψ(s);θ).

The function we wish to approximate is either the optimal policy function π∗ or the
optimal value function v∗. We therefore divide the networks we train into two separate
classes: policy networks,

fπ : S → RG(s),

which return a probability distribution over each of the G(s) possible actions from state
s, and value networks,

fv : S → R,

which predict the minimum number of moves remaining to clear some board.
Regardless of whether we train fπ or fv, the neural network must be able to recognize

spatial patterns in a Former board, which has a grid-like structure. This makes convo-
lutional neural networks (CNNs) the most reasonable choice (O’Shea & Nash, 2015). In
this section, we first define the key building blocks of a CNN, and explain how they are
combined to form policy and value networks. Thereafter, we give a brief overview of the
neural network training procedure that is common for both supervised and reinforcement
learning.

3.1.1 Building Blocks

The overall structure of a CNN is similar to that of any other neural network: It consists
of several layers, each represented by a function

f (l) = f (l)
(
x1, . . . ,xwl−1

;θ(l)
)
, l = 1, . . . , ℓ,

where ℓ is the number of layers and wl−1 is the number of inputs into layer l. The number
of inputs wl−1 and outputs wl may vary from one layer to another, hence the index l.
When we evaluate some state using the network, we feed the input through the first layer,
use the output as input in the next layer, and so on,

f(s;θ) =
(
f (ℓ) ◦ · · · ◦ f (1)

)
(s;θ). (3.1)

The CNNs we use in this thesis are made up of three main components, each with a
different purpose: convolutional blocks, global average pooling (GAP) layers, and fully
connected layers. Figure 3.1 shows an example of a value network that combines each of
these. In this section, we cover the three main component separately, before we give a
brief note on the use of activation functions in the output layer.

Convolutional Blocks

A convolutional block consists of three components in successive order: a convolutional
layer, followed by batch normalization and then the ReLU activation function, as illus-
trated by the colored stacks in Figure 3.1.

The general idea behind a convolutional layer is to extract spatial features from grid-
like input by using the convolution operation. Hence, the outputs of a convolutional layer
are typically called feature maps, to emphasize that they are images representing spatial
features from the original input.

A convolutional layer consists of wl filters, each of which has wl−1 kernels. These are
k× k matrices used to perform the convolutions with each of the wl−1 feature maps from

CHAPTER 3. MACHINE LEARNING BACKGROUND 15

Conv. BN

Convolutional block

ReLU GAP
F.C.

Figure 3.1: An example CNN architecture of a value network. The initial board is first
fed through a single convolutional block, where the grid is convolved, fed through batch
normalization and ReLU, which after each step outputs a set of feature maps. Thereafter,
we employ GAP to reduce each feature map to a scalar value, which in turn are fed into
a fully connected layer that outputs a value estimate.

the previous layer. Before convolving, the feature maps are padded with ⌊k/2⌋ zeros on
all sides. This ensures that the features at the board edges are convolved just like those in
the interior, allowing the output dimensions to be the same as the input. After convolving
each feature map with its respective kernel, we sum over all instances and add a bias,
which gives a measure of the presence of that particular feature in the input feature maps.
To be precise, we define a function f (l)

j : Xwl−1 → X representing filter j of layer l as

f
(l)
j (x1, . . . ,xwl−1

;θ
(l)
j) =

wl−1∑
c=1

K
(l)
j,c ∗ xc + b

(l)
j . (3.2)

Here, θ(l)
j contains the parameters that define the kernels Kj,c and the bias b(l)j . The bias

is a scalar value that is added element-wise. The kernel size k is the same for all filters
in the same layer, but it may vary between layers. For games, for example, it is common
to use a larger kernel size for the first convolutional layer, say k = 5 or k = 7, to capture
broader spatial patterns, and k = 3 for subsequent ones (Silver et al., 2016).

After applying f
(l)
j to all feature maps from the previous layer, we perform batch

normalization. The general idea behind this is to normalize the feature maps to have zero
mean and unit variance, which can accelerate and stabilize the training of deep neural
networks (Ioffe & Szegedy, 2015).

After batch normalization, we apply the ReLU activation function, which is used to
introduce non-linearity to the network function, since the objective function f ∗ typically
is not linear. The ReLU is defined as

σ(xi) = max(0,xi), (3.3)

where the maximum operation is performed element-wise. Thus, the function f (l) :
Xwl−1 → Xwl that represents a full convolutional block is defined by

f (l)(x1, . . . ,xwl−1
;θ(l)) =

{(
σ ◦ BN ◦ f (l)

j

)
(x1, . . . ,xwl−1

;θ
(l)
j)
}wl

j=1
,

with σ defined in (3.3), BN denoting batch normalization, f (l)
j defined in (3.2), and θ(l)

containing the parameters that define layer l.

CHAPTER 3. MACHINE LEARNING BACKGROUND 16

Global Average Pooling

A global average pooling (GAP) layer is used to transition from wl feature maps to wl

scalar values, f (l) : Xwl → Rwl . This is done by taking the global average of each feature
map,

f (l)(x1, . . . ,xwl
) = (mean(x1), . . . ,mean(xwl

)) ,

which does not require any parameters. Although fully connected layers can be used
for the same purpose, the lack of parameters means that GAP avoids the problem of
overfitting, which is often an issue when using a fully connected layer to transition from
feature maps to scalars (Lin et al., 2013).

Fully Connected Layers

Fully connected layers are perhaps the simplest layer type, which is typically used in the
final layers of a CNN. It consists of neurons, and at each neuron, we calculate a weighted
average of scalar values x ∈ Rwl−1 from the previous layer,

f
(l)
j

(
x;θ

(l)
j

)
=

wl−1∑
c=1

W
(l)
j,c xc + b

(l)
j .

Here, W (l)
j,c , c = 1, . . . , wl−1 are the weights associated with neuron j in layer l, and b(l)j is

the bias. Thus, a fully connected layer is represented by the function f (l) : Rwl−1 → Rwl

defined as

f (l)
(
x;θ(l)

)
=

{
wl−1∑
c=1

W
(l)
j,c xc + b

(l)
j

}wl

j=1

.

In practice, this is calculated using matrix multiplications, with the notation

f (l)
(
x;θ(l)

)
= W (l) x+ b(l), θ(l) = {W (l),b(l)}.

Output Activation Functions

Activation functions typically have two purposes in a neural network: (1) to introduce
non-linearity, as is the case with the ReLU function (3.3), and (2) to map the output of
the network to the correct range. For the second purpose, the choice of activation function
depends on whether we have a policy or a value network. In a policy network, the output
y = (y1, . . . , yC) needs to be a probability distribution over C possible actions, which is
obtained using the softmax activation function,

σ(y) =

{
eyc∑C
j=1 e

yj

}C

c=1

. (3.4)

A value network predicts a scalar value y, for which it is common to use the linear
activation function,

σ(y) = y. (3.5)

CHAPTER 3. MACHINE LEARNING BACKGROUND 17

3.1.2 Training a Neural Network

Now that we have provided the building blocks of CNNs, we switch focus to how they are
trained. Recall that the purpose of training a neural network is to tune the parameters
θ so that the network f approximates some target function f ∗ as accurately as possible.
This is an iterative procedure that requires three components:

1. A dataset split into batches

Btrain = {(si, f ∗(si)}nbatch
i=1 ,

where f ∗(si) is the target output for some state si.

2. An objective function, J(θ;Btrain), that indicates how much the network output
deviates from the target output under the current set of parameters θ, based on
network evaluations on all samples in Btrain.

3. An optimization algorithm used to calculate how θ should be updated to better
approximate the target function, by minimizing J(θ;Btrain).

The first two points differ between supervised and reinforcement learning. Therefore,
we return to the details of these in Sections 3.2 and 3.3. Here, we focus on the shared
component, point 3: how θ is updated.

Updating the parameters of a neural network is an optimization problem. We wish
to minimize the objective function J(θ;Btrain) with respect to the parameters θ, which
requires:

1. computing the gradients of the objective function with respect to the parameters of
each layer, ∇θ(l)J(θ;Btrain), l = 1, . . . , ℓ, and

2. an optimization algorithm that uses those gradients to update θ, iteratively.

We obtain the gradients through backpropagation, a core algorithm in neural network
training procedures (Goodfellow et al., 2016). Backpropagation works by first calculat-
ing the error at the output layer and then using the chain rule to propagate the error
backwards to the earlier layers. This way, we find an estimate for how much each layer
contributes to the overall error of the network output, which we use to update the pa-
rameters of each layer. For illustrative purposes, we show the mathematics behind the
backpropagation algorithm for fully connected layers. The same principles apply to all
other layer types as well (Rumelhart et al., 1986).

Let
x(0) =

(
ψ(s1), . . . , ψ(snbatch

)
)

be the input states in batch Btrain, and for each layer l define

z(l) = W (l) x(l−1) + b(l), x(l) = σ
(
z(l)
)
.

That is, z(l) is the output of layer l before applying any activation function. After perform-
ing the forward pass defined in (3.1) on all samples in Btrain to obtain x(ℓ) and computing
the objective function J = J(θ;Btrain), we calculate the gradient with respect to the
pre-activation output using the chain rule,

δ(ℓ) = ∇z(ℓ)J = ∇x(ℓ)J ⊙ σ′(z(ℓ)),

CHAPTER 3. MACHINE LEARNING BACKGROUND 18

where ⊙ is the element-wise multiplication operation. This gradient is interpreted as the
change in the objective function given a small change in the pre-activation output. From
here, we propagate that error backwards to previous layers using the chain rule,

δ(l) =
(
W (l+1)

)⊤
δ(l+1) ⊙ σ′(z(l)), l = ℓ− 1, . . . , 1.

Using this, it can be shown (Goodfellow et al., 2016) that the gradients with respect to
the weights and biases of each layer are

∇W (l)J = δ(l)
(
x(l−1)

)⊤
,

∇b(l)J = δ(l) 1nbatch
.

Here, we recall that the full set of parameters θ contains parameters for all layers,
which with the notation of fully connected layers is written as

θ =
{
W (l), b(l)

}ℓ
l=1
.

Then, ∇θJ is the vector formed by stacking the gradients of the weights and biases from
each layer,

∇θJ =
{
∇W (l)J, ∇b(l)J

}ℓ

l=1
.

To update θ based on these gradients, we use the adaptive moment estimation al-
gorithm, or Adam (Kingma & Ba, 2014), which is commonly used to train deep neural
networks (Jais et al., 2019; Ogundokun et al., 2022). Here we provide the update rule
used in Adam, but for an in-depth description of the ideas behind the algorithm, we refer
to the original paper by Kingma and Ba (2014). At time steps t = 1, 2, . . ., we follow the
update rule

θt ← θt−1 − η
m̂t√
v̂t + ϵ

,

where η is the learning rate and ϵ is a small parameter added to avoid division by zero. All
operations on vectors are element-wise. The two vectors m̂t and v̂t are unbiased estimates
of the first and second moments of the gradient

gt = ∇θt−1J,

that is,
m∗

t = E
[
gt

]
and v∗

t = E
[
gt ⊙ gt

]
.

They are updated in each iteration based on

mt = β1mt−1 + (1− β1) gt−1, m̂t =
mt

1− βt
1

,

and
vt = β2 vt−1 + (1− β2) g2

t−1, v̂t =
vt

1− βt
2

.

The initial guesses m0 and v0 are zero vectors, and the parameters β1 and β2 are constants.
We use the values recommended by the authors, that is, ϵ = 10−8, β1 = 0.9, and β2 = 0.999
(Kingma & Ba, 2014). The learning rate η must be tuned to some value that gives stable
convergence of the optimization problem. We cover this at the end of the next section.

CHAPTER 3. MACHINE LEARNING BACKGROUND 19

3.2 Supervised Learning
Now that we have covered the structure of CNNs and discussed how the parameters θ are
updated, we switch our focus to the first approach to training neural networks: supervised
learning. We start by explaining the two components of training that we left open in the
previous section: data and objective functions. Similarly to the learning rate η used in the
Adam optimizer, data and objective functions rely on hyperparameters, which must be
tuned to ensure stable convergence and avoid overfitting. Therefore, we end this section
with an overview of Bayesian optimization for hyperparameter tuning.

3.2.1 Data

In the supervised learning setting, we assume that we already have a data set containing
N pairs of input states and target outputs. Let

D = {(si, f ∗(si))}Ni=1

denote the data set, where f ∗(si) is the target output. This is a single action or a scalar
value, depending on whether we train a policy or a value network, respectively.

Data are typically split into training, validation, and test sets. Training data Dtrain

is used to tune the network parameters, validation data Dval is used to monitor the
performance of the model during training, and test data Dtest is used to evaluate the final
model.

During training, the training data are randomly split into batches of some predeter-
mined size nbatch. As in the previous section, we let

Btrain = {(si, f ∗(si))}nbatch

i=1

denote one such batch. Each batch is fed into the network, and the objective function
is calculated based on the nbatch network outputs. After all batches have been used
to update the parameters, as discussed in Section 3.1.2, one epoch is completed. We
repeat this process with new randomly sampled batches from the same training data for
a predetermined number of epochs nepoch.

The batch size must be appropriately tuned to extract as much information from the
training data as possible, while avoiding overfitting. Overfitting occurs when the network
learns patterns that are specific only to the training data and not the objective function,
which may cause the training loss to be low, while the validation loss is high. We cover
how this parameter is tuned in Section 3.2.4.

3.2.2 Objective Functions

Objective functions, denoted J(θ;Btrain), are used to update the parameters in a neural
network. In the supervised learning setting, they typically consist of two terms: a loss
function and a regularization term. The loss function, denoted

L = L(θ;Btrain),

is a measure of how much the network outputs f(si;θ) deviate from the target outputs
f ∗(si), i = 1, . . . , nbatch, based on a batch of data, Btrain. The regularization term, denoted

R = R(θ),

CHAPTER 3. MACHINE LEARNING BACKGROUND 20

is used to penalize large parameter values in order to avoid overfitting (Goodfellow et al.,
2016). We now cover reasonable loss functions and a regularization term for policy and
value networks.

A policy network returns a probability distribution over C possible actions, and con-
sequently, a reasonable loss function is the cross-entropy metric (Cover & Thomas, 2005).
For some target action a∗i , let p∗

i ∈ {0, 1}C denote the target probability distribution,
which has probability 1 on the index c∗i corresponding to the target action. Then, given
an estimated probability distribution pi, the cross-entropy of the two distributions is
defined as

H(pi,p
∗
i) = −

C∑
c=1

p∗i,c log pi,c = − log pi,c∗i .

The lower the estimated probability of the correct action, the higher the cross-entropy.
Then, for a batch of estimated distributions

(f(s1;θ), . . . , f(snbatch
;θ))

and target actions with associated distributions

(p∗
1, . . . ,p

∗
nbatch

),

the cross-entropy loss function is defined as

LCE(θ;Btrain) =
1

nbatch

nbatch∑
i=1

H(f(si;θ),p
∗
i). (3.7)

A value network outputs a single scalar value, thus a reasonable loss function is the
mean squared error (MSE) over all nbatch instances in the batch Btrain,

LMSE(θ;Btrain) =
1

nbatch

nbatch∑
i=1

(f(si;θ)− f ∗(si))
2. (3.8)

The regularization term used for both policy and value networks is proportional to
the sum of squares of all parameters,

R(θ) = β∥θ∥2, (3.9)

where the proportionality factor β is called weight decay. Similarly to nbatch and η, this
is a hyperparameter that should be appropriately tuned.

Adding the respective loss functions and regularization terms together, given a batch of
training data Btrain, appropriate objective functions for training policy and value networks
are given by

Jπ(θ;Btrain) = LCE(θ;Btrain) +R(θ) (3.10)

and
Jv(θ;Btrain) = LMSE(θ;Btrain) +R(θ), (3.11)

respectively, with LCE, LMSE and R defined in (3.7), (3.8) and (3.9).

CHAPTER 3. MACHINE LEARNING BACKGROUND 21

3.2.3 Evaluation Metrics

The objective functions introduced in the previous section have the purpose of guiding the
network training process, balancing between choosing the θ that perfectly fits the training
data and avoiding overfitting. Evaluation metrics are also used to measure deviation
between network outputs and target outputs, but their purpose is to evaluate the networks
on validation and test data, typically without regularization terms. In this subsection, we
introduce some useful evaluation metrics, starting with those used for policy networks.

It is common to use two types of evaluation metrics for policy networks: one that
is comparable to the training loss, to monitor how training and validation loss change
compared to each other over time, and one that is more interpretable with regards to the
purpose of the network. For the first case, it is reasonable to use cross-entropy validation
loss, as defined in (3.7). This is calculated based on batches of data Bval for the sake of
computational efficiency.

As a second and more interpretable evaluation metric for policy networks, Top-k accu-
racy is a common choice (Russakovsky et al., 2015). Let c(k)i denote the index of the k-th
largest probability in f(si;θ), and recall that c∗i is the index associated with the target
action a∗i . Then, the Top-k metric based on a batch of data Bval is defined as

Topk(θ;Bval) =
1

nbatch

nbatch∑
i=1

I
(
c∗i ∈

{
c
(j)
i

}k

j=1

)
, (3.12)

that is, the proportion of samples for which the correct action is among the k actions
assigned the highest probability by the network. When monitoring the accuracy of policy
networks, we typically choose a couple values of k, say 1 and 3, and monitor Top-1 and
Top-3 accuracy. For value networks, MSE as defined in (3.8) is typically used for both
training and validation, as it already provides an intuitive metric for network performance.

3.2.4 Hyperparameter Tuning with Bayesian Optimization

In the previous subsections, we introduced three network hyperparameters that must be
tuned: batch size nbatch, learning rate η, and weight decay β. Let these be denoted by

ξ = (nbatch, η, β).

Given some validation loss Lval, which is typically chosen based on the ones defined in the
previous subsections, the purpose of hyperparameter tuning is to find the ξ that minimizes
the validation loss,

ξ∗ = argmin
ξ∈Ξ
Lval(θ(ξ);Bval),

which is an optimization problem over a predetermined parameter space Ξ. Here, we treat
θ as a function of the hyperparameters ξ. For ease of notation, we write

Lval(ξ) ≡ Lval(θ(ξ);Bval).

Each evaluation of Lval(ξ) requires training an entire neural network, which is a very
expensive procedure. To handle optimization problems with expensive objective functions,
Bayesian optimization techniques have proven successful (Brochu et al., 2010).

Bayesian optimization techniques rely on two components: a surrogate model, which
for each ξ gives an estimate L̂val(ξ) and a corresponding uncertainty of that estimate,

CHAPTER 3. MACHINE LEARNING BACKGROUND 22

and an acquisition function, which is used to determine what ξ to try next, based on the
surrogate model. Generally speaking, the idea is to balance exploiting hyperparameters
that have previously given the lowest observed values of Lval and exploring parameters
that are assigned high uncertainty by the surrogate model.

A common surrogate model is the Tree-structured Parzen Estimator (TPE) (Bergstra
et al., 2011). TPE uses the previous observations

Lval(ξq), q = 1, . . . , t− 1,

to form two densities,

l(ξ) = p
(
ξ | Lval(ξ) < y∗

)
and g(ξ) = p

(
ξ | Lval(ξ) ≥ y∗

)
,

where y∗ is the 0.15-quantile of the observed losses (Bergstra et al., 2011). That is, l(ξ)
and g(ξ) are estimated so that they fit the 15% best and the 85% worst of all previous
observations, respectively. The two densities are estimated using Parzen window density
estimators. For details on how this is done, we refer to the original paper by Bergstra
et al. (2011).

Once we have estimated l(ξ) and g(ξ), we determine the set of parameters ξt to try
next. For this purpose, the TPE surrogate model naturally combines with the expected
improvement (EI) acquisition function, defined as

EI(ξ) = E[max{0, y∗ − L̂val(ξ)}]. (3.13)

Maximizing (3.13) is equivalent to maximizing the ratio between l(ξ) and g(ξ) (Snoek
et al., 2012), meaning that we choose the next set of parameters ξt that maximizes the
EI acquisition function by choosing

ξt = argmax
ξ∈Ξ

l(ξ)

g(ξ)
. (3.14)

Intuitively, this means that we choose the ξ that is likely to be good and unlikely to be
bad. In practice, maximization is performed by sampling several ξ from l(ξ), and then
choose according to (3.14).

The optimization algorithm is run for some predetermined number of trials, r, after
which we choose

ξ̂∗ = arg min
q=1,...,r

Lval(ξq)

among the r sets of parameters we have evaluated.
Not all parameters tested in hyperparameter tuning contribute equally to reducing

the validation loss. A common way to measure hyperparameter importance is through
the use of permutation importance (Altmann et al., 2010). Here, we provide a brief
overview of this method. For in-depth explanations of random forests and the use of
permutation importance, we refer to the literature by Breiman (2001) and Altmann et al.
(2010), respectively. When calculating permutation importance, we first fit a random
forest regressor f̂ to the data set

{ξq,Lval(ξq)}rq=1,

that takes a vector of hyperparameters ξq as input and predicts the associated validation
loss, f̂(ξq). Next, we shuffle the r instances of one of the hyperparameters, say hyper-
parameter j, thus obtaining ξq,perm(j), and predict the resulting validation loss using the

CHAPTER 3. MACHINE LEARNING BACKGROUND 23

random forest on the permutated data, f̂(ξq,perm(j)), q = 1, . . . , r. Based on this, we
calculate the MSE between the predictions when permuting hyperparameter j, and the
original validation loss,

MSEperm(j) =
1

r

r∑
q=1

(
f̂(ξq,perm(j))− Lval(ξq)

)2
.

By repeating this process several times, calculating the mean MSE from permutations of
each hyperparameter, we obtain measures of how much the permutation of hyperparam-
eter j changes the prediction of the random forest. The average MSEperm(j) is therefore
a measure of how important each hyperparameter is to the change in the validation loss.
Then, the permutation importance of hyperparameter j is defined as

Ij = MSEperm(j) −MSEorig, (3.15)

where the first term is the mean MSE over all the permutations of hyperparameter j, and
MSEorig is based on the prediction on the original hyperparameter set,

MSEorig =
1

r

r∑
q=1

(
f̂(ξq)− Lval(ξq)

)2
.

3.3 Proximal Policy Optimization
In this section, we cover the second machine learning approach that we use to approxi-
mate π∗ and v∗: PPO (Schulman et al., 2017). PPO is a state-of-the-art reinforcement
learning technique that has proven successful in solving a variety of sequential decision-
making problems, including games (Berner et al., 2019). It builds on the core principles of
reinforcement learning, where an agent iteratively interacts with an environment, earning
rewards for its actions and gradually learning to improve its policy based on the reward
signals. This concept is illustrated in Figure 3.2. In our case, the environment is the
Former game, and PPO is a way of training an agent to play the game through trial and
error.

Rt+1

st+1

Rt

Reward Action

atst

State

Agent

Environment

Figure 3.2: The agent-environment interaction of reinforcement learning. An agent
performs an action at at time t, which changes the state of the environment from st to
st+1 and gives a reward Rt+1. The agent then repeats the process.

We start by providing some background theory on how reinforcement learning algo-
rithms find optimal policy and value functions through the use of dynamic programming
techniques, specifically through policy iteration. Then, we explain how PPO approximates
policy iteration, thus finding approximations to the optimal policy and value functions.

CHAPTER 3. MACHINE LEARNING BACKGROUND 24

3.3.1 Dynamic Programming

Within the notation and objectives defined by the MDP framework in Section 2.3.1,
dynamic programming algorithms are used to find optimal policy and value functions
(Sutton & Barto, 2014). This is done through a process called policy iteration, which
consists of two steps: policy evaluation, where we use the current policy π to find a
corresponding value function vπ, and policy improvement, where we use the new vπ to
improve the previous policy. In this subsection, we explain the details of the two steps in
policy iteration, starting with policy evaluation.

During policy evaluation, we assume that the agent acts according to some fixed policy
π. The purpose is to find a new value function, vπ, based on this policy. Generalizing
the definition of the optimal value function in Section 2.3.1, any value function vπ(s) is
defined as the expected return from some state when acting according to π,

vπ(s) = Eπ[G0 | s]. (3.16)

Here, using our definition of future return in (2.1), where we recall that we set the dis-
counting factor γ = 1, (3.16) can be written as the immediate reward from the next action
R(s, a) and the return from the next state G1,

vπ(s) = Eπ[R(s, a) +G1 | s].

Applying the law of total expectation gives

vπ(s) =
∑
a∈As

π(a | s)Eπ [R(s, a) +G1 | s, a],

and since R(s, a) is deterministic once s and a are fixed,

vπ(s) =
∑
a∈As

π(a | s) (R(s, a) + Eπ [G1 | s, a]).

Then, writing out the expectation, we have

vπ(s) =
∑
a∈As

π(a | s)
(
R(s, a) +

∑
s′∈S

P (s′ | s, a)Eπ [G1 | s, a, s′]
)
.

Since the future return G1 only depends on the future state s′, the last expectation is
in fact the value function evaluated in the next state, thus we end up with the Bellman
expectation equation,

vπ(s) =
∑
a∈As

π(a | s)
(
R(s, a) +

∑
s′∈S

P (s′ | s, a) vπ(s′)
)
. (3.17)

This is the core component in policy evaluation. It is used to define the policy evaluation
scheme, where in time steps k = 1, 2, . . . ,

v(k+1)(s) =
∑
a∈As

π(a | s)
(
R(s, a) +

∑
s′∈S

P (s′ | s, a) v(k)(s′)
)
, (3.18)

CHAPTER 3. MACHINE LEARNING BACKGROUND 25

where v(0) can be defined arbitrarily. Note that, by construction, vπ is a fixed point in
this iteration. Moreover, the iteration scheme is guaranteed to converge to vπ for a fixed
policy π, assuming the MDP is finite (Sutton & Barto, 2014). This is the case for Former .

In policy improvement, we keep vπ fixed and update π. The idea is to look one move
ahead and update the policy so that it assigns probability 1 to the action that gives
the highest expected reward after that move. Mathematically, we define the action-value
function,

qπ(s, a) = R(s, a) +
∑
s′∈S

P (s′ | s, a) vπ(s′),

which is the expected return from taking action a in state s, and then following the policy
π. Note that this is the same expression as in the parentheses of (3.17), hence there is a
close relationship between qπ and vπ. Based on the action-value function, we define the
updated policy function to be

πnew(a | s) =
{
1, a = arg max

a′∈As

qπ(s, a
′),

0, otherwise.

By the policy improvement theorem (Sutton & Barto, 2014), this step is guaranteed to
provide a new policy πnew that is better than or equal to the previous policy, in the sense
that

vπnew(s) ≥ vπ(s) ∀s ∈ S.
Moreover, by repeating policy evaluation and policy improvement over and over, the
policy and value functions will converge to their respective optimal functions.

Recall from Section 2.3.2 that the problem of solving Former is formulated as finding
π∗ and v∗. This is the purpose of policy iteration, hence it is a reasonable approach to
solving our problem. However, as we also discussed in Section 2.3.2, it is in practice im-
possible to find π∗ and v∗ since it involves visiting every s ∈ S. Therefore, we approximate
the two-step procedure using PPO. This is the topic of the next subsection.

3.3.2 PPO as an Approximate Policy Iteration

The purpose of PPO is to train a neural network, which is done through policy itera-
tion. The method uses a dual-head CNN, which is a type of neural network consisting of
several convolutional blocks that are connected in the last layer to two heads : one that
approximates the optimal policy function, denoted πθ, and one that approximates the
optimal value function, denoted vϕ. Here, θ and ϕ are the parameters in the respective
networks. This is a typical setup in actor-critic reinforcement learning models, where the
policy head (the actor) chooses the action, and the value network (the critic) evaluates
the action chosen by the actor (Mnih et al., 2016). PPO trains the dual-head neural
network by approximating the policy iteration procedure, repeatedly updating vϕ and πθ
through policy evaluation and policy improvement, respectively. We now cover how both
are done, starting with policy evaluation.

Approximate Policy Evaluation

As explained in the previous subsection, the purpose of policy evaluation is to update vϕ
while keeping πθ fixed. In PPO, this is performed by tuning the parameters ϕ, that is, by

CHAPTER 3. MACHINE LEARNING BACKGROUND 26

training the critic. As discussed in Section 3.1.2, this requires data, an objective function,
and an optimization algorithm.

The PPO agent collects a batch of data of size nbatch through repeated interactions
with the environment, which in our case translates to the agent playing many games of
Former . If the duration of a game is T moves, the agent obtains T samples

{(st, at, Rt)}T−1
t=0 ,

where st is the state, at is the action chosen, and the Rt is the reward obtained at each
time step in that game. For each sample, we then calculate the temporal difference,

R̂t =
T−1∑
h=0

λhRt+h + λT vϕ(st+T). (3.19)

The temporal difference is a biased estimate of the rewards remaining in an episode from
a state st, under the current actor, πθ. The bias comes from the temporal difference
parameter λ ∈ [0, 1], which is incorporated to reduce the high variance associated with
full Monte Carlo samples. Konda and Tsitsiklis (1999) showed that introducing this bias
often stabilizes convergence, and in practice it is common to set λ ∈ [0.9, 0.99] (Schulman
et al., 2015; Sutton & Barto, 2014).

The agent obtains a dataset Dtrain containing N samples by playing many episodes
after each other. As explained in Section 3.1.2, the data is split into batches of size nbatch,
denoted Btrain. From each temporal difference in a batch of data, we find the advantage
estimates

Ai = R̂i − vϕ(si), i = 1, . . . , nbatch.

These form the basis of the loss function associated with policy evaluation with PPO.
Given a batch of data, the critic loss is calculated using

LV(ϕ;Btrain) =
1

nbatch

nbatch∑
i=1

(
R̂i − vϕ(si)

)2
, (3.20)

that is, the MSE between the critic prediction vϕ(si) and the temporal difference R̂i of
each sample. Since R̂i estimates the remaining rewards from a state, it is essentially a
sample-based estimate of the Bellman expectation defined in (3.17). Consequently, by
minimizing (3.20), PPO approximates the fixed point solution to the policy evaluation
scheme (3.18) each time the parameters ϕ are updated.

Approximate Policy Improvement

Recall that, in the policy improvement step, the value function is fixed and used to update
the policy function. Equivalently, in the policy improvement step of PPO, the value head
vϕ is fixed, and we train the policy head πθ. For a detailed explanation of the ideas
behind the PPO policy improvement step, we refer to the original paper by Schulman
et al. (2017). Here, we provide a brief overview, without a detailed explanation of the
ideology. First, define the probability ratio between the new and old policies for each
sample i,

ri(θ) =
πθ(ai | si)
πθold(ai | si)

,

CHAPTER 3. MACHINE LEARNING BACKGROUND 27

where, as in Section 2.3.2, πθ(a | s) denotes the probability assigned to action a by πθ(s).
With this definition, and based on the same samples of data obtained as explained under
policy evaluation, the clipped surrogate objective function used by PPO is defined as

LCLIP(θ;Btrain) = −
1

nbatch

nbatch∑
i=1

min (ri(θ)Ai, clip(ri(θ), 1− ε, 1 + ε)Ai) . (3.21)

This is typically referred to as the actor loss. In (3.21), the clip(·) function is defined as

clip(ri(θ), 1− ε, 1 + ε) = max
(
min

(
ri(θ), 1 + ε

)
, 1− ε

)
,

which ensures that the policy does not undergo excessively large changes in each step
(Schulman et al., 2017).

Combined Objective Function

In practice, a step in the policy iteration using PPO is carried out in a single step, and not
by alternating between policy evaluation and improvement. This is done by combining
the actor loss (3.21) and the critic loss (3.20) into one. On top of this, it is common to
subtract an entropy bonus term (Schulman et al., 2017),

H(θ;Btrain) = −
1

nbatch

nbatch∑
i=1

∑
a∈Asi

πθ(a | si) log πθ(a | si), (3.22)

to motivate exploration: deterministic probability distributions give low entropy bonus,
and vice versa. Combining the three, the objective function that PPO minimizes for each
batch of data Bbatch collected is given by

J(θ,ϕ;Btrain) = LCLIP(θ;Btrain)︸ ︷︷ ︸
actor loss

+ cval LV(ϕ;Btrain)︸ ︷︷ ︸
critic loss

− centH(θ;Btrain)︸ ︷︷ ︸
entropy

, (3.23)

where cval and cent are constants, and LCLIP, LV and H are defined in (3.21), (3.20) and
(3.22), respectively. For the task of minimizing (3.23), it is common to use the Adam
optimizer, which we discussed in Section 3.1.2.

CHAPTER 3. MACHINE LEARNING BACKGROUND 28

CHAPTER

FOUR

SEARCH TECHNIQUES

Search techniques are clever ways to look for solutions to sequential decision-making
problems. They have in particular proven useful for solving deterministic single-player
games, where a solution always exists, but the problem is finding it in a large state space
(Pearl & Korf, 1987; Schadd et al., 2008). In this chapter, we first formulate Former as a
tree search problem and explain how we use the approximate policy and value functions
(π and v) to efficiently traverse the search tree (Section 4.1). Thereafter, we explain
the two search techniques we use in this thesis: MCTS (Section 4.2) and beam search
(Section 4.3).

4.1 Former as a Tree Search Problem
In a deterministic, single-player game such as Former , it is natural to model boards and
actions as a search tree. Each node then represents a game state, and edges correspond
to actions. The root node is the initial state, and nodes reachable in t actions lie at tree
level t. Applying an action to a state generates a child node, which is connected to its
parent node by the edge corresponding to the action taken. In Figure 4.1 we illustrate
how such a tree structure represents states and actions for a simple 2 × 2 board with 2
different shapes.

Figure 4.1: A simple initial 2 × 2 board and the corresponding search tree. Nodes are
the boards, and edges represent each possible action.

29

CHAPTER 4. SEARCH TECHNIQUES 30

As we observed in Section 2.2.2, the number of possible combinations of actions ex-
plodes as the number of moves increases, reaching over 1021 possible combinations at a
depth of 15 (for 9 by 7 boards with 4 shapes). This implies that a solution cannot be
found by exploring the entire search space, and consequently we need to narrow it down
by choosing actions wisely at each level. This is where the policy and value functions,
π and v, come into play. Policy functions indicate what actions to take from one board,
whereas value functions can be used to determine what actions are the most promising
from an entire tree level by comparing board difficulty after each action. These two are
incorporated into the search techniques that we use: π in MCTS, and v in beam search.

4.2 Monte Carlo Tree Search
MCTS is a search method that has proven particularly useful for solving sequential
decision-making problems with large state spaces (Świechowski et al., 2023). The general
idea behind the method is to estimate the value of each possible action from a state based
on Monte Carlo simulations, and use these values to determine the best choice of action.
Kocsis and Szepesvári (2006) and Coulom (2006) first proposed the algorithm, using it
to significantly improve machine-player performance in Go. MCTS has since been used
to solve a variety of sequential decision-making problems, while also being improved by
incorporating techniques from other areas, such as reinforcement learning. Arguably, the
most well-known use cases are AlphaGo and its successor models AlphaGo Zero and Al-
phaZero, which combined MCTS with deep neural networks to outperform all other Go
players, both humans and machines (Silver et al., 2016, 2017, 2018).

Repeat while t < tmax

Selection Expansion Simulation Backtracking

Figure 4.2: The four steps of the MCTS algorithm. In step 1 we traverse the existing
tree, in step 2 we add all child nodes and choose one action, in step 3 we simulate a
play-through from that action to obtain a value based on the outcome of the simulation,
which is added to the traversed nodes in step 4. The 4 steps are repeated until some time
limit tmax is reached.

Each iteration of the MCTS algorithm is split into four steps: selection, expansion,
simulation and backtracking. These are illustrated in Figure 4.2. The purpose of the four
steps is to estimate the value of each possible action from the initial state and use these
estimates to choose the best action. In the first step, we select a node that represents a

CHAPTER 4. SEARCH TECHNIQUES 31

new state in the game (selection). Then, we add all its child nodes to our existing tree
(expansion), simulate a play-through of the game from one of these nodes (simulation),
and store the value obtained from the play-through as a measure of quality of the selected
tree branch (backtracking). Throughout this process, we keep track of the best solution
found, which is returned at the end of the search, when some time limit tmax has been
reached.

In this section, we explain the details of the MCTS algorithm, highlighting the adap-
tations we make to solve Former . An overview of the implementation is shown in Algo-
rithm 1, and we explain each step thoroughly in separate subsections.

Algorithm 1 MCTS
Require: initial state s0, time limit tmax, policy function π
1: initialize tree with root s0 ▷ Each iteration starts from s0
2: vbest ←∞
3: while t < tmax do
4: sleaf ← Selection(s0, π) ▷ see Algorithm 1.1
5: snew ← Expansion(sleaf , π) ▷ see Algorithm 1.2
6: vsim ← Simulation(snew, π) ▷ see Algorithm 1.3
7: Backtracking(vsim, path from s0 to snew) ▷ see Algorithm 1.4
8: if vsim < vbest then
9: store actions taken from s0 to sT

10: vbest ← vsim
11: end if
12: end while
13: return shortest sequence of actions from s0 to sT

Step 1: Selection

In the selection phase of MCTS, we traverse the tree from the root node until we reach a
leaf node, as described in Algorithm 1.1. A leaf node is defined as a node that we have not
yet expanded, that is, it has no children. We choose which node to traverse to at each tree
level based on some decision rule, which we tune based on the exploration-exploitation
trade-off: we want to explore actions that have not been thoroughly explored while also
exploiting the current best-performing actions. A common decision rule for MCTS is to
choose the action that maximizes the upper confidence bound for trees (UCT) formula
(Silver et al., 2016),

Q(s, a) + π (a | s) cpuct

√∑
a′∈As

N(s, a′)

1 +N(s, a)
, (4.1)

where N(s, a) is the number of times action a has been visited from state s, cpuct is a
tuning parameter, and π(a | s) is the probability assigned to action a in state s by the
policy. The function Q : S ×As → R is the average simulation value obtained,

Q(s, a) =

∑N(s,a)
i=1 V

(i)
sim(s, a)

N(s, a)
, (4.2)

CHAPTER 4. SEARCH TECHNIQUES 32

where V (i)
sim(s, a) is the value from the i-th simulation where action a was explored from

state s during the MCTS iteration. We explain how this value is defined when we discuss
the simulation step.

In the UCT formula (4.1), Q(s, a) represents exploitation and the second term repre-
sents exploration: Q is higher the better the previous simulation values, and the second
term is higher the fewer times a node has been visited. The trade-off is determined by
the parameter cpuct, which is increased to obtain more exploration, and vice versa.

Algorithm 1.1 MCTS: Selection
Require: initial state s0, policy function π
1: s← s0
2: while node representing s is not leaf node do

3: a∗ ← argmaxa

[
Q(s, a) + cpuct π(a | s)

√∑
a′∈As

N(s,a′)

1+N(s,a)

]
4: s← τ(s, a∗)
5: end while
6: return sleaf ← node

Step 2: Expansion

When selection terminates at a leaf node sleaf , we expand it by generating all untried
actions as children, and simulate from one of them. The choice of child is made by
sampling from the policy, a ∼ π(sleaf). When expanding, we also initialize the number
of visits N , the average value Q, and the probability assigned to each child node by the
policy. Pseudocode for the expansion step is shown in Algorithm 1.2.

Algorithm 1.2 MCTS: Expansion
Require: leaf node sleaf , policy function π(a | s)
1: for all actions a ∈ Asleaf do
2: s′ ← τ(sleaf , a)
3: add s′ as child of sleaf
4: initialize N(sleaf , a)← 0, Q(sleaf , a)← 0, π(a | sleaf)
5: end for
6: snew ← τ(sleaf , a), where a ∼ π(sleaf)
7: return snew

Step 3: Simulation

After expanding the tree and choosing an initial action to simulate from, we simulate the
rest of the game. The purpose of this is to obtain some value that indicates the quality of
the chosen actions. We perform the simulation by sampling from the policy at each turn,
as explained in the previous step.

When there are no more actions to be performed, the simulation step is completed and
we obtain some value Vsim based on the simulation performance. The value must reflect
the goal of Former , meaning that a low total number of moves should give a high value.
Consequently, a reasonable definition of Vsim is

Vsim = −T,

CHAPTER 4. SEARCH TECHNIQUES 33

that is, the negative number of moves used to clear the board. The simulation step
implementation is shown in Algorithm 1.3.

Algorithm 1.3 MCTS: Simulation
Require: expanded node snew, policy function π, current tree level d
1: s← snew
2: while As ̸= ∅ do
3: sample a ∼ π (s)
4: s← τ(s, a)
5: d← d+ 1 ▷ Keep track of number of moves used
6: end while
7: T ← d
8: Vsim ← −T ▷ Negative number of moves used to clear the board
9: return Vsim

Step 4: Backtracking

After the simulation, we backtrack along the nodes visited in steps 1, 2, and 3, increment-
ing the visit count N(s, a) and updating the mean value using

Q(s, a)← (N(s, a)− 1)Q(s, a) + Vsim
N(s, a)

.

The backtracking step is included in Algorithm 1.4.

Algorithm 1.4 MCTS: Backtracking
Require: simulation value Vsim, path from s0 to snew
1: for all (s, a) in path do
2: N(s, a)← N(s, a) + 1 ▷ Increment visit count

3: Q(s, a)← (N(s, a)− 1)Q(s, a) + Vsim
N(s, a)

▷ Update mean simulation value

4: end for

We repeat the four steps of the MCTS algorithm until some time limit tmax is reached.
Although this limit can be set arbitrarily large, our goal is to solve Former boards effi-
ciently, and hence tmax is chosen to reflect that purpose.

Minimum Exploration Limit

Silver et al. (2016) and Schadd et al. (2008) showed that it is beneficial to set a minimum
exploration limit from the first state, Nmin. This is due to the importance of the first few
moves, where the MCTS model may hone in on just a select few actions very quickly if
the parameter cpuct is improperly tuned. The minimum exploration limit forces the model
to try each action from the initial state Nmin times before the UCT formula (4.1) takes
over.

CHAPTER 4. SEARCH TECHNIQUES 34

4.3 Beam Search
Beam search (Bisiani, 1987) is conceptually a simpler search technique than MCTS. It
does not rely on full simulations of the game, but rather plays a game one move at a time,
choosing the wbeam best actions available according to some model at each tree level.
There is no randomness or simulations involved, and as a result, the method relies more
on correct guidance than MCTS. Given a good model to guide it, however, the method
can find solutions to a Former board quickly, as was demonstrated by Odland (2024).
In this section, we briefly explain how the algorithm works. Pseudocode is included in
Algorithm 2.

Algorithm 2 Beam Search
Require: initial state s0, beam width wbeam, value function v(·)
1: B ← {s0} ▷ current beam
2: while true do
3: C ← ∅ ▷ collect all child states
4: for all s ∈ B do
5: for all a ∈ As do
6: s′ ← τ(a, s)
7: C ← C ∪ {s′}
8: end for
9: end for

10: Compute value v(s′) for each s′ ∈ C
11: Sort C in descending order by v
12: B ← {first wbeam states in C } ▷ Prioritize child states using v
13: if any s ∈ B is a goal state then
14: return solution path ▷ Terminate once first solution is found
15: end if
16: end while

Beam search only explores a fixed number of actions at each tree level. Consequently,
it builds a tree that reminds of a “beam”, with a fixed maximum width wbeam. Starting
from the root, we expand all child nodes from the previous layer, score each new state
using some value function v(s), and keep only the top wbeam states for the next level.
Figure 4.3 illustrates how beam search prioritizes actions based on a heuristic and builds
a tree of fixed width wbeam = 2.

CHAPTER 4. SEARCH TECHNIQUES 35

Figure 4.3: Illustrative example of beam search. At each tree level, the wbeam = 2 best
actions according to some heuristic are added to the tree. This causes the tree to have a
fixed width, which reduces runtime and space-complexity.

CHAPTER 4. SEARCH TECHNIQUES 36

CHAPTER

FIVE

METHODOLOGY

Now that we have developed the theoretical foundations, we show how the theory is
implemented in practice. Recall from the end of Chapter 2 that our approach can be
roughly split into two steps:

1. Make models that approximate π∗(s) and v∗(s), whose purposes are to suggest
actions and predict the number of remaining moves from state s.

2. Make solvers by combining the models with MCTS and beam search.

We use three approaches to create models: self-made heuristics, supervised learning,
and PPO. These are not meant to solve the game on their own, but merely suggest
promising actions or predict the difficulty of some board. Models are combined with
search techniques to form solvers, which are used to search for the optimal solutions to
any board. Here, policy models are combined with MCTS and value models are combined
with beam search. An overview of the two main steps, the five subcomponents, and how
they form a pipeline for solving Former is illustrated in Figure 5.1.

Self-made heuristics

Supervised learning

PPO

Beam search with v

MCTS with π

Models Solvers

Figure 5.1: The methods we use to solve Former and their relations. Self-made heuris-
tics, supervised learning and PPO are used independently to make models, which approx-
imate π∗ and v∗. These are combined into MCTS and beam search to form solvers, which
are used to search for solutions to Former boards. Self-made heuristics are also used with
beam search to generate data for the supervised learning approach.

This chapter provides details of the implementation of each component of our ap-
proach. We first give a brief note on how Former is implemented and how we acquire daily

37

CHAPTER 5. METHODOLOGY 38

boards in Section 5.1. Then, we proceed with each of the three model types, separately.
First, we explain our choice of self-made heuristics in Section 5.2. Second, Section 5.3
gives the details of the supervised learning methodology, and third, Section 5.4 provides
the implementation details of PPO. Finally, in Section 5.5, we switch our focus to the
solvers, explaining the implementation details of MCTS and beam search as well as how
the three models are incorporated into them.

5.1 Code Implementation and Daily Board Acquisition
Former is not an open-source game, so we implement the game ourselves. Due to the com-
putationally heavy methods we use in this thesis, fast function evaluations are important.
Therefore, we implement the game in C++. For comparison, the empirical cumulative
distribution functions (CDFs) of the time it takes to solve Former boards with random
play using Python and C++ are shown in Figure 5.2. The Python implementation had
a median runtime of 0.0021 seconds, while C++ used 0.00027 seconds: approximately
8 times faster. These results, and all subsequent runtimes reported in this thesis, were
recorded on a MacBook Air with an Apple M1 chip.

10−4 10−3 10−2

Time per game (s)

0.00

0.25

0.50

0.75

1.00

F
ra

ct
io

n
of

ru
n

s
fi

n
is

h
ed

0.00210 s0.00027 s

Empirical CDF of runtimes for Python and C++ implementations

Python

C++

Figure 5.2: Empirical CDFs of the time used to solve boards with random play, split on
C++ and Python implementations, based on 100 000 randomly generated boards. Median
time to solve a board was 0.00027 seconds with C++, and 0.00210 seconds with Python.

All code used in this project is available in the GitHub repository linked in Ap-
pendix B.1. This also includes a graphical user interface (GUI) that anyone can use
to play the game and obtain recommendations from one of our solvers at each turn. Ex-
amples of this GUI are shown in Appendix B.2, and a detailed explanation of how to use
it is in the README file in the GitHub repository.

An appropriate way of evaluating the performance of our models and solvers is to
compare their solutions to the best scores obtained by anyone in Norway on daily NRK
boards. NRK does not keep previous boards available on their website, and therefore
we have stored 100 daily boards over the period from January 27th to May 20th 2025, to
use for testing purposes. For reproducibility, these boards are available in the GitHub
repository.

CHAPTER 5. METHODOLOGY 39

5.2 Self-made Heuristics
Heuristics are game-specific strategies that perform well according to the purpose of the
game. In the case of Former , heuristics are strategies that use fewer moves to clear
the board than guessing randomly. In this section, we explain our choice of self-made
heuristics, and how approximate value and policy functions are defined based on them.

We use two types of self-made heuristics. The first is the greedy strategy of always
removing the largest group from the board. The second is a greedy look-ahead strategy
that minimizes the number of possible actions n steps ahead.

For the largest-group-first strategy, we define a corresponding value function that is
the number of remaining shapes on the board, which we denote M(s),

vlargest(s) =M(s). (5.1)

This is not a particularly good approximation to the optimal value function, but it may
still perform well as guidance for search techniques if the actual minimum number of
moves remaining is sufficiently correlated with the number of shapes left on the board.

For the n look-ahead heuristic, we define the value function to be the lowest attainable
number of groups n steps ahead. Hence, in the base case (n = 0), the corresponding value
function is the current number of groups,

v0(s) = G(s). (5.2)

For n > 0, we minimize this value over all possible sequences of actions {a1, . . . , an}.
Recall that s′ = τ(s, a) denotes the transition function from state s to s′ through action
a. Then, we can define the n look-ahead value function of some state s as

vn(s) = min
a1,...,an

G
(
τ
(
· · · τ(s, a1) · · · , an

)︸ ︷︷ ︸
k actions ahead

)
. (5.3)

Again, although this value function generally does not give the actual remaining number
of moves, it may still work well as guidance for search techniques if the number of groups
n steps ahead is sufficiently correlated with the actual optimal value function. Due to
the exponential increase in the number of possible action combinations, it is only worth
checking the first few steps ahead. Thus, we implement the n look-ahead heuristic for
n = 1, n = 2 and n = 3.

Based on the value functions, we craft deterministic policy functions for each heuristic.
That is,

π(a | s) =
{
1 if v(τ(s, a)) = mina′ v(τ(s, a

′)),

0 otherwise.

Although these do not allow any exploration on their own, using them in MCTS auto-
matically provides some exploration, and thus we allow these policies to be deterministic.

We evaluate the self-made heuristics through greedy play with their respective policy
functions. That is, at each step t and state st, we choose the action at that maximizes
the policy function,

at = argmax
a
π(a | st),

and record the number of moves used and the mean runtime to clear boards. Although
the models are not intended to solve boards on their own through greedy play, using few

CHAPTER 5. METHODOLOGY 40

moves and having a low standard deviation indicates that a model is accurate and can
serve as a reliable guide when incorporated into search techniques.

The evaluation of each heuristic is done using two separate datasets. The first
contains 1 000 boards generated from the discrete uniform distribution with fixed seed
np.random.seed(22). We use a large number of boards to obtain statistically reliable
measures of the performance of each model, which we compare to determine which heuris-
tics are feasible to use with search techniques. The second dataset is the 100 daily boards
published by NRK, which we use to monitor how close our heuristics come to the best-
known solutions.

5.3 Supervised Learning
In this section, we cover the exact methods used to train policy and value networks with
supervised learning. Recall that, similar to the self-made heuristics, these networks are
models that we later combine with MCTS and beam search. Hence, the purpose of the
networks is not to solve Former boards on their own, but rather to suggest promising
actions and evaluate board difficulty. First, we explain the process of generating data,
before we provide network architectures and explain the hyperparameter tuning process.
Then, we give details of the training procedure, which includes our choice of training and
validation loss, before explaining how networks are evaluated.

5.3.1 Data Generation

We do not have many official daily boards at our disposal, and the ones we have are more
interesting to use for testing purposes. Therefore, we generate our own data to train
neural networks. This is done in 3 steps:

1. Generate a board based on the discrete uniform distribution.

2. Find an “expert” solution to the board using beam search with a fixed beam width
and a reasonable heuristic as guidance.

3. Save each state-action pair along with the number of moves it took to solve the
board from that state. For example, if the board is cleared in 15 moves, we obtain
15 tuples of the form

(xi, ai, Ti),

where xi = ψ(si) is the tensor representation of a board, ai is the expert move and Ti
is the number of moves remaining. In our implementation, the tensor xi represents
a one-hot encoded board,

xi ∈ {0, 1}9×7×5.

In one-hot encoding, a 1 at index (n,m, r) means that there is a shape of type r
at grid point (n,m). Here, r ∈ {0, 1, 2, 3, 4}, where r = 4 represents an empty grid
point.

The motivation for using beam search to generate data is that it acts as an expert
playing the game, thus it provides high-quality data that the networks can be trained
on. Although it is not guaranteed to find the optimal solution for any board, using a
solver gives better data than greedy play with the heuristic model on its own. Hence, by

CHAPTER 5. METHODOLOGY 41

mimicking the behavior of the solver, the networks may turn out better than the heuristics.
This approach of training on expert data is typically called imitation learning (Ho &
Ermon, 2016), and has proven useful for training neural networks to make predictions on
games such as Go, where perfect data is not available (Silver et al., 2016).

We use a beam search solver to generate data instead of MCTS since it gave the
best results in preliminary studies with self-made heuristics as guidance. To assess which
heuristic and corresponding beam width to use, we run a quick analysis of the performance
of beam search with the 1 and 2 look-ahead heuristics, which we found to be the most
promising (more details on this in Section 6.1). Since we need a substantial amount of
data, we set a time limit of

tmax ≈ 1 second

to generate one play-through. The analysis is based on 1 000 randomly generated Former
boards, for which we record the runtime and number of moves used by beam search with
both heuristics and a wbeam that gives runtime close to 1 second. The results are presented
in Table 5.1. From this we observe that, given a time constraint of 1 second, the 1 look-
ahead heuristic with wbeam = 128 on average finds better solutions. Consequently, this is
the configuration that we use to generate expert training data.

Table 5.1: Average solution length and runtime for beam search with 1 look-ahead
heuristic with wbeam = 128, and 2 look-ahead heuristic with wbeam = 16.

Heuristic Beam width Mean moves Mean runtime (s)

1 look-ahead 128 14.8 0.86
2 look-ahead 16 15.1 1.08

In total, we generated 9.083.686 data samples using beam search with the 1 look-
ahead heuristic and wbeam = 128. This amount of data is assumed to be sufficient for the
networks to learn general strategies, without making training times impractically long.
The 9 million samples correspond to approximately 600.000 games, from which we remove
the games that used more than 20 moves, as these are assumed not to represent good
gameplay. This only constituted 364 samples. After splitting the games into 90% training
and 10% validation, we randomize the order of the data samples to avoid correlation
between samples from the same game affecting the results.

In Figure 5.3, we provide an overview of the number of samples in the dataset per
number of remaining moves. Here, we observe that the data are biased towards lower
move counts, which is because of the generation process: all games provide a sample
with, say, 5 moves remaining, but only a 20-move game provides a sample with 20 moves
remaining. Biased data may cause the networks to obtain lower accuracy on more difficult
boards, as they are rarely encountered during training. An option to handle this issue is
to upsample the data, meaning that we duplicate observations with 14 moves, 15 moves,
and so on, to obtain an even distribution. However, this approach may cause other
issues. Data generated by beam search are inherently biased towards a higher number
of remaining moves than the optimal solutions, since the solver is not perfect. Thus,
there are two biases acting against each other: bias towards lower move counts as there
are more samples where fewer moves remain, and bias towards higher move counts since
beam search makes mistakes. We cannot know how to perfectly balance these biases
without knowing what the optimal solutions are, and therefore we leave the data as is.

CHAPTER 5. METHODOLOGY 42

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Remaining moves

0

200000

400000

600000
N

u
m

b
er

of
sa

m
p

le
s

Number of samples per number of remaining moves

Figure 5.3: The number of samples in the dataset per number of moves remaining.

5.3.2 Neural Network Architectures

Now that we have covered data generation, we switch focus to the networks themselves.
In this subsection, we introduce the network architectures that we use. In total, we make
8 models with the supervised learning approach: four value networks and four policy
networks. The purpose of training four of each is to test how the number of layers d
and the number of filters per layer w affect the overall performance of both types of
networks. We do not use Bayesian optimization to tune w and d since other network
hyperparameters are highly correlated with the network architecture, which may cause
slow convergence of the optimization algorithm (Snoek et al., 2012). Moreover, for a fixed
dataset, we would expect the network with the highest w and d to perform better, which
does not take the runtime of network evaluations into account. Therefore, we fix

w ∈ {32, 64} and d ∈ {5, 10},

which should be sufficient to show the impact of w and d, while keeping the networks
light enough for fast evaluation. We denote policy and value networks with d layers and
w filters by

fπ,(w,d) and fv,(w,d),

respectively.
In Table 5.2 we show the network architectures and the parameters relevant to each

layer. Both policy and value networks have the same backbone, consisting of d convolu-
tional blocks. In the first block, we use a kernel size k = 7 to enable the networks to
recognize larger spatial patterns from the input grid, as discussed in Section 3.1. In the
next d− 1 convolutional blocks, we set k = 3, which is a common choice to enable further
feature extraction while keeping the network lightweight for fast evaluations (Silver et al.,
2016). After the backbone of d convolutional blocks, the policy and value network archi-
tectures differ. Value networks employ a GAP layer, followed by a fully connected layer
with one neuron and the linear activation function (3.5). Policy networks use a convolu-
tional layer with kernel size k = 1 to preserve spatial features, followed by the softmax
activation function (3.4) to output probabilities over each of the 9× 7 grid spaces. In our
formulation of Former (Section 2.3.1), a board consists of G(s) possible actions, one for
each of the G(s) groups on the board. Hence, the output of policy networks should assign

CHAPTER 5. METHODOLOGY 43

one probability to each group, and not one probability to each grid point. To obtain this,
we perform masking, which consists of two steps:

1. Setting the probability of all board spaces with no shapes to 0, and standardizing.

2. For each of the G(s) groups, sum up the probabilities over all shapes in that group,
and assign that probability to only the first action, as a representative of the group.

Masking is important because, when the beam search solver generated data, each group
was represented by the first grid point in that group. So, to obtain the correct measure of
network accuracy, the network should output a distribution over the same actions, where
a prediction is considered correct as long as the network assigned the highest cumulative
probability to the correct group. If we do not mask, the network must first learn to predict
the correct action in a group, which may hinder it from learning actual game strategies.

Table 5.2: Layers in policy and value networks, and the kernel sizes of each convolutional
layer.

Policy network architecture

Layer(s) Input size Output size Kernel size

1 convolutional block 9× 7× 5 9× 7× w k = 7
d− 1 convolutional blocks 9× 7× w 9× 7× w k = 3
1 convolutional block 9× 7× w 9× 7 k = 1
Softmax activation 9× 7 9× 7 —
Masking 9× 7 G(s) —

Value network architecture

Layer(s) Input size Output size Kernel size

1 convolutional block 9× 7× 5 9× 7× w k = 7
d− 1 convolutional blocks 9× 7× w 9× 7× w k = 3
1 GAP layer 9× 7× w w —
1 fully connected layer w 1 —
Linear activation 1 1 —

5.3.3 Hyperparameter Tuning

For each of the eight networks, we tune the hyperparameters

ξ = (nbatch, η, β),

that is, batch size, learning rate in the Adam optimizer, and weight decay in the loss
function. We use the TPE surrogate model with the EI acquisition function, as discussed
in Section 3.2.4. The assumed domains of the hyperparameters are presented in Table 5.3.

We use a subset of 2.000.000 data samples from the original data to perform hyperpa-
rameter tuning. This subset has a split of 90% training and 10% validation. A network is
trained for 5 epochs before the validation loss is calculated, and Bayesian optimization is
used to determine the next choice of parameters, as described in Section 3.2.4. In total,

CHAPTER 5. METHODOLOGY 44

Table 5.3: Hyperparameter domains.

Hyperparameter Symbol Domain

Batch size nbatch {32, 64, 128, 256}
Learning rate η [10−6, 10−2]
Weight decay β [10−6, 10−2]

we run each network for 50 such iterations, and choose the set of hyperparameters that
results in the lowest validation loss.

For value networks, we use the MSE validation loss during hyperparameter tuning,

Lval,v(ξ) = LMSE(θ(ξ);Bval).

For policy networks, we use Top-1 accuracy as defined in (3.12), since this gives an intuitive
measure of network performance. To be precise, we use the negative Top-1 metric since
hyperparameter tuning is formulated as a minimization problem, that is,

Lval,π(ξ) = −Top1 (θ(ξ);Bval) .

Hyperparameter importance is calculated using (3.15), with the procedure explained
in Section 3.2.4.

5.3.4 Training and Validation

After hyperparameter tuning, we train each of the four policy and four value networks
on the full training set with the respective hyperparameters. We use MSE loss and
cross-entropy loss for training value and policy networks, respectively. As explained in
Section 3.2.2, a regularization term is also added to avoid overfitting. Thus, the loss
functions used for training neural networks are given by (3.10) for policy networks and
(3.11) for value networks. We train for a total of 15 epochs, after which we choose the
networks associated with the epochs of lowest validation losses.

Cross-entropy and MSE are also used for validation, as discussed in Section 3.2.3.
We do not add weight decay, since we want a measure of the exact performance of each
network, regardless of parameter size. Validation loss is calculated using the same batch
size as in training, which is for the sake of computational efficiency. Validation batches
are kept identical at each epoch and for each network trained, to ensure that the metrics
are comparable.

5.3.5 Evaluation

We evaluate the performance of the networks through greedy play on the same two test
sets used to evaluate self-made heuristics, that is, one with 1 000 randomly generated
boards and one with 100 official boards. Let

[
fπ(s;θ)

]
a

denote the probability assigned
to action a in state s by the policy network. Then, greedy play with policy networks
involves choosing the action assigned the highest probability at each step,

at = argmax
a

[
fπ(st;θ)

]
a
.

CHAPTER 5. METHODOLOGY 45

With value networks, we look one step ahead and choose the action leading to the state
with the lowest estimated remaining number of moves,

at = argmin
a
fv(τ(st, a);θ),

where τ is the transition function defined in Section 2.3.1.
The purpose of evaluating networks through greedy play is to compare how well they

perform on Former boards. We do not expect them to solve many boards perfectly,
as their purpose first and foremost is to guide the solvers, and not to find the best-
known solutions by themselves. We return to how networks are incorporated into search
techniques to make solvers in Section 5.5. Before this, we explain the implementation
details of the final approach used to create models: PPO.

5.4 Proximal Policy Optimization
In this section, we cover the methodology that we use to train neural networks with PPO.
Recall from Section 3.3 that PPO uses an actor-critic network, which consists of a common
backbone, a policy head, and a value head. Our intention is to train such networks with
PPO, extract the policy and value heads with the common backbone as separate actor
and critic networks, πθ and vϕ, and finally use them in solvers to search for solutions to
Former boards. We come back to how they are incorporated into search techniques in
the next section. Here, we first give our choice of actor-critic network architectures, then
the hyperparameters used, and finally details of the training procedure of PPO models.

For ease of implementation, we use existing Python libraries that support PPO: the
Gymnasium environment interface (Towers et al., 2024) and the Stable-Baselines3 algo-
rithm library (Raffin et al., 2021). To use these, we first implement Former as a custom
Gymnasium environment. All relevant code is included in the GitHub repository of Ap-
pendix B.1.

5.4.1 Actor-critic Network Architecture

In this subsection, we cover the network architectures used in PPO models. These are
similar to those used in the supervised learning setting (Section 5.3.2), but due to the
different structure of dual-head networks and for ease of implementation, we only set the
backbone of the network to our liking, and use the actor and critic heads that are standard
in the Stable-Baselines3 implementation of PPO (Raffin et al., 2021). The layers in the
common backbone, in the actor head and in the critic head are shown in Table 5.4.

We mask the output of the actor network, which we found to speed up the convergence
of the training process. Masking is done slightly differently from the supervised case
explained in Section 5.3.2. There is no reason for the actor to learn that only the first
shape of a group is a valid action, and as a result, masking too much of the board will lead
to slow or no convergence. What we found worked the best was to mask only the actual
illegal moves, that is, where there are no shapes, and allow the PPO model to choose
among all grid points with shapes in them. In Table 5.4, M(s) denotes the number of
shapes left in board s.

CHAPTER 5. METHODOLOGY 46

Table 5.4: Layers in the actor-critic networks, with d convolutional blocks and w filters
per layer. The network backbone is shared, and splits into the actor head, which outputs
a probability distribution over the M(s) shapes on the board, and the critic head, which
outputs a scalar value.

Network backbone

Layer(s) Input size Output size Kernel size

1 convolutional block 9× 7× 5 9× 7× w k = 7
d− 1 convolutional blocks 9× 7× w 9× 7× w k = 3
Flatten 9× 7× w 63 · w —
1 fully connected 63 · w 256 —
ReLU 256 256 —

Actor (policy) head

Layer(s) Input size Output size Kernel size

1 fully connected 256 63 —
Softmax 63 63 —
Masking 63 M(s) —

Critic (value) head

Layer(s) Input size Output size Kernel size

1 fully connected 256 1 —

5.4.2 Hyperparameters and Reward Shaping

Here, we give the hyperparameters used and define the reward signals obtained by the
PPO agent during training. PPO models are trained for a period of several days to achieve
convergence, and therefore we do not extensively explore all hyperparameters. Instead,
we rely on the literature and game knowledge to fix a set of hyperparameters, and as long
as they cause convergence, we are satisfied with the choice.

All hyperparameters introduced in Section 3.3, as well as the reward per action, are
included in Table 5.5. The ones relevant for training that we did not cover are set to the
standard values in the PPO implementation of StableBaselines-3 (Raffin et al., 2021). For
each of the hyperparameters given, we also provide a brief explanation.

The initial learning rate η0 is set to the Stable-Baselines3 standard of η0 = 3.0× 10−4.
We use a linearly annealing learning rate scheduler, meaning that the learning rate η(t)
starts at η(0) = η0 and steadily decrease as time goes by,

η(t) = η0

(
1− t

Nmax

)
.

Using a linearly annealing learning rate has shown to provide stable convergence and
improved performance of the networks obtained from PPO (Mnih et al., 2016; Schulman
et al., 2017).

As discussed in Section 2.3.1, we set the discounting factor γ = 1 and the reward per
action Rt = −1, since each move in a solution is worth the same to the final solution.
We do, however, set λ = 0.95 to reduce the large variance in the rewards obtained, as

CHAPTER 5. METHODOLOGY 47

Table 5.5: Hyperparameters and reward per action in PPO models.

Hyperparameter Symbol Value / Notes

Initial learning rate η0 3.0× 10−4

Learning rate scheduler – Linear (η0 to 0)
Discount factor γ 1
Reward per action Rt −1
TD parameter λ 0.95
PPO clip factor ε 0.20
Samples collected per environment nsteps 1048
Number of parallel environments nenvs 16
Batch size nbatch 256
Number of PPO epochs nepoch 10
Value-loss coefficient cval 0.5
Entropy coefficient cent 0.0
Maximum steps Nmax 2× 109

discussed in Section 3.3.2. The value λ = 0.95 is the standard choice in the Stable-
Baselines3 implementation. We set the clip factor ε = 0.2, which is a PPO standard used
by Schulman et al. (2017).

The hyperparameters nsteps, nenvs, nbatch and nepoch are related to the data used in
each network update. Here, we use nsteps = 1048 and nenvs = 16, meaning that we collect
data in parallel over 16 environments, each collecting 1048 data samples, leading to a
total of N = 16 · 1.024 = 16.384 data samples. This data is then split into batches of size
nbatch = 256, and trained for nepoch = 10 epochs. The batch size is set to a larger value
than we used in the supervised learning setting to avoid overfitting on the relatively small
dataset, and since we plan on running the training procedure for a longer period of time.

The value loss and entropy bonus coefficients, cval = 0.5 and cent = 0, are also set to
the standard values of Stable-Baselines3. This means that we do not give any entropy
bonus to the model. This is partially because tuning the entropy bonus properly requires
running the algorithm several times, and partially because we plan on implementing the
algorithms in search techniques, anyway, which inherently provide exploration even if the
actor is deterministic.

The maximum number of steps Nmax = 2× 109 is set so that the algorithms can train
for several days before stopping. One step is equivalent to one action. In practice, this
number is large enough so that the training is stopped by some time limit before reaching
the step limit, which we discuss in the next subsection.

5.4.3 Training

We train PPO models for a fixed time limit. This time limit is mainly determined by the
computational resources we have at hand. For each PPO-based network we train, we use
1 GPU for network updates and 16 CPUs for data collection, split over the nenvs = 16
environments. To obtain such computational power, we use the Idun supercomputer
provided by the Norwegian University of Science and Technology. Training is carried out
with a time limit of 4 days.

Since training each model requires a significant amount of computational power over

CHAPTER 5. METHODOLOGY 48

a longer period of time, we only train two networks. To make these comparable to the
supervised learning models, we set

(w, d) ∈ {(32, 5), (64, 10)},

which we refer to as the small and large networks, respectively. The actor and critic
models of each network are denoted

πθ,(w,d) and vϕ,(w,d).

5.4.4 Evaluation

After training, we extract the dual-head networks, and treat the actor and critic of each
network as separate models. We evaluate them using the exact same greedy play approach
as with supervised learning models, explained in Section 5.3.5.

Like self-made heuristic and supervised learning models, the purpose of training PPO
models is not to have them find the best solutions to all boards. They predict what actions
appear promising and how many moves remain for a given board, which is incorporated
into search techniques to perform the actual solving. This is the topic of the next and
final section of this chapter.

5.5 Search Techniques
Now that we have covered each of the three approaches we use to create models, we
explain how they are combined with search techniques to make solvers. Recall from Sec-
tions 5.2, 5.3 and 5.4 that each approach provides policy and value models, which suggest
reasonable actions and the remaining number of moves from some board. Also, recall
from Chapter 4 that MCTS relies on a policy function to suggest promising actions from
a single board, and that beam search relies on a value function to compare the predicted
remaining moves across many boards. Thus, we split between two types of solvers: MCTS
solvers, which combine MCTS with policy models, and beam search solvers, which com-
bine beam search with value models. In this section, we explain the implementation
details of the two search techniques and list the models combined with each of them:
first for MCTS and then for beam search. Afterwards, we describe how the solvers are
evaluated on two datasets.

5.5.1 MCTS Implementation Details

The fixed parameters used in our implementation of MCTS are included in Table 5.6. The
exploration parameter cpuct is set to 10, which we found to give sufficient exploration to
discover good solutions. This parameter does not require much tuning since the minimum
exploration limit, Nmin, already enforces some exploration. We set Nmin = 10, which is
similar to what was done by Silver et al. (2016) and Schadd et al. (2008).

A single search with MCTS lasts for a predetermined number of seconds tmax. The
choice of tmax depends on the size of the test set we evaluate on, which we come back to
in Section 5.5.3.

In total, we use 8 different policy models in MCTS. These are listed in Table 5.7.

CHAPTER 5. METHODOLOGY 49

Table 5.6: The parameters used in MCTS.

Parameter Symbol Value

Exploration constant cpuct 10
Minimum visits from root node Nmin 10

Table 5.7: Policy models used in MCTS solvers.

Model Explanation Covered in

π1 Policy function for the 1 look-ahead heuristic Section 5.2
π2 Policy function for the 2 look-ahead heuristic
fπ,(32,5) Policy network with w = 32, d = 5 Section 5.3
fπ,(32,10) Policy network with w = 32, d = 10
fπ,(64,5) Policy network with w = 64, d = 5
fπ,(64,10) Policy network with w = 64, d = 10
πθ,(32,5) PPO actor with w = 32, d = 5 Section 5.4
πθ,(64,10) PPO actor with w = 64, d = 10

5.5.2 Beam Search Implementation Details

Beam search is implemented as an anytime algorithm, inspired by Odland (2024). This
means that we let the algorithm run for increasing values of wbeam, and stop once an
iteration exceeds the time limit tmax. In particular, we initially search with a beam width
of 1, and increase by a factor of 2 each time,

wbeam = 1, 2, 4, 8, 16, . . . ,

until the last search exceeds the time limit.
We incorporate 8 value models into beam search, which are listed in Table 5.8.

Table 5.8: Value functions used in beam search solvers.

Model Explanation Covered in

v1 Value function for the 1 look-ahead heuristic Section 5.2
v2 Value function for the 2 look-ahead heuristic
fv,(32,5) Value network with w = 32, d = 5 Section 5.3
fv,(32,10) Value network with w = 32, d = 10
fv,(64,5) Value network with w = 64, d = 5
fv,(64,10) Value network with w = 64, d = 10
vϕ,(32,5) PPO critic with w = 32, d = 5 Section 5.4
vϕ,(64,10) PPO critic with w = 64, d = 10

5.5.3 Evaluation

We evaluate the solvers on the same datasets as the models: one with 1 000 randomly
generated boards, and one with 100 official boards published by NRK. The solvers are

CHAPTER 5. METHODOLOGY 50

evaluated through search, where each solver is allowed to search for solutions for a prede-
termined time limit, exploring the state space based on the particular model and search
technique it consists of.

As with the models, the purpose of evaluating the solvers on the dataset containing
1 000 boards is to obtain statistically reliable measures of how well the solvers perform
and compare their performance to that of greedy play with the models. Since the size
of this test set is relatively large, we set a time limit tmax = 10 seconds per board per
solver. During these 10 seconds, we monitor all the solutions found by each solver and
the respective time stamps they were found. This allows us to calculate the best-so-far
solution curves, which for each solver show how the mean number of moves used to clear
the boards decreases as the search time increases.

Evaluating on the set of 100 daily boards allows us to compare the performance of our
solvers to the best-known solutions to each board. For this purpose, we set a time limit
tmax = 60 seconds, and use all solvers on all boards. Thereafter, we choose one solver to
use for two additional purposes: First, we monitor the number of unique and equivalent
best solutions that exist for a couple handpicked boards, and second, we set a time limit
of 24 hours, and check whether there exist better solutions than what is known to some
of the daily boards.

CHAPTER

SIX

RESULTS AND DISCUSSION

This chapter presents the results from using self-made heuristics and neural networks
with search techniques to solve Former boards. The results follow the same order as the
methodology presented in Chapter 5. In Sections 6.1, 6.2 and 6.3, we present the results
from the three approaches to approximating π∗ and v∗: self-made heuristics, supervised
learning, and PPO, respectively. After these, in Section 6.4, we show the results of testing
each solver on randomly generated and official Former boards.

6.1 Self-made Heuristics
To evaluate our self-made heuristic models, we generated a test set of 1 000 boards by
sampling each shape from a discrete uniform distribution. Each board was solved by a
random baseline strategy, that is, by selecting moves randomly, and by greedy play with
each self-made heuristic in turn. For each heuristic, we record the number of moves to
solve each board, and the corresponding runtimes.

Table 6.1: Aggregate performance of random gameplay and greedy play with self-made
heuristics on 1 000 randomly generated boards.

Heuristic Mean moves Std. Dev. Time per board (ms)

Random 28.67 3.72 0.27
Largest group 24.99 4.12 0.61
1 look-ahead 18.54 2.64 5.7
2 look-ahead 16.21 1.91 110
3 look-ahead 15.48 1.80 2840

Table 6.1 summarizes, for each heuristic, the mean moves to clear a board, the standard
deviation in the number of moves, and the average runtime per board. Figure 6.1 shows
the full distribution of moves per board for each heuristic. Unsurprisingly, we observe
that the larger the look-ahead horizon n, the lower the mean number of moves for the n
look-ahead heuristics. The runtime of these, however, increases exponentially, reaching
almost 3 seconds per board for the 3 look-ahead heuristic. Despite obtaining the lowest
mean number of moves, having a runtime of 3 seconds is infeasible to use in a search
technique. What is perhaps more surprising, is the high move count for the largest-group-
first heuristic. Although it seems like a feasible strategy, it does not perform significantly

51

CHAPTER 6. RESULTS AND DISCUSSION 52

better than guessing randomly, and in Figure 6.1 we observe that the worst-case solution
in fact is worse than random play. This is consistent with what we showed in Figure 2.3
of Chapter 2, and is likely caused by there being many small groups remaining towards
the end of the play-through.

Random Largest group 1 look-ahead 2 look-ahead 3 look-ahead

10

15

20

25

30

35

40

N
u

m
b

er
of

m
ov

es
to

cl
ea

r
b

oa
rd

Move distribution by heuristic

Figure 6.1: Distribution of move count for random and greedy gameplay using self-made
heuristics, over 1 000 randomly generated Former boards.

To further assess the accuracy of the self-made heuristics, we use them in greedy play
on the set of 100 daily boards that NRK published between January 27th and May 20th,
and compare how much the solutions found deviate from the best-known solutions. Let ∆
denote this deviation, which is the number of extra moves each heuristic uses compared
to the best-known solutions. The results are presented in Table 6.2. The 3 look-ahead
heuristic performs the best, followed by the 2 look-ahead one, which found the best
solutions to 10 and 2 out of the 100 boards, respectively. Although the purpose of the
heuristics is not to find the best-known solutions, performing well on the daily boards is
a good indication of how they will perform when combined with search techniques. In
addition to using few moves, however, a good model also has a low runtime. Thus, based
on the overall performance of the self-made heuristic models on both datasets, we only use
the 1 and 2 look-ahead heuristics in solvers, as these give reasonable trade-offs between a
low mean move count and a low runtime.

6.2 Supervised Learning
In this section, we provide the results obtained with the neural networks trained using
supervised learning on self-generated data. We first show the outcomes of hyperparam-
eter tuning, where we have found appropriate combinations of parameters for training
four policy and four value networks. Thereafter, we show the results from the training
procedures of these networks, before we evaluate the networks through greedy play on the
same two datasets that we used to evaluate the self-made heuristics.

CHAPTER 6. RESULTS AND DISCUSSION 53

Table 6.2: The number of boards per solution found by each heuristic model through
greedy play, measured in difference to the best-known solution, ∆.

Number of solutions per ∆ (heuristic models)

Model ∆ = 0 ∆ = 1 ∆ = 2 ∆ = 3 ∆ = 4 ∆ ≥ 5

Random 0 0 0 0 0 100
Largest group 0 0 1 0 0 99
1 look-ahead 0 4 9 13 23 51
2 look-ahead 2 23 25 31 13 6
3 look-ahead 10 26 37 15 7 5

6.2.1 Hyperparameter Tuning

This subsection presents the results from hyperparameter tuning of eight neural networks
based on Bayesian optimization. We first show the best value and policy networks for
each combination of d ∈ {5, 10} convolutional blocks and w ∈ {32, 64} filters per layer,
before we present hyperparameter importance and convergence. The parameters and the
respective domains we tune over are given in Table 5.3.

Value networks are compared based on MSE, and policy networks based on Top-1
accuracy. Table 6.3 presents the best-performing models. We observe that the policy net-
work typically perform better with higher learning rates and higher batch size compared
to value networks, and that weight decay is set to a low value for all networks.

Table 6.3: Parameters in the best policy and value networks according to Top-1 accuracy
and validation MSE, for each combination of w ∈ {32, 64} and d ∈ {5, 10}.

Best policy networks

Network Learning rate Batch size Weight decay Top-1

fπ,(32,5) 0.0028 128 2.5 · 10−6 0.521
fπ,(32,10) 0.0049 256 1.8 · 10−6 0.582
fπ,(64,5) 0.0045 128 1.6 · 10−6 0.555
fπ,(64,10) 0.0031 128 1.0 · 10−6 0.621

Best value networks

Network Learning rate Batch size Weight decay MSE

fv,(32,5) 0.00073 64 5.9 · 10−6 0.488
fv,(32,10) 0.0022 128 2.0 · 10−6 0.484
fv,(64,5) 0.00045 64 6.6 · 10−6 0.441
fv,(64,10) 0.00049 32 1.5 · 10−6 0.430

Figures 6.2 and 6.3 show the convergence of the optimization algorithm and the per-
mutation importance of hyperparameters, respectively, for the policy and value networks
with w = 64 and d = 5. These are calculated based on the procedure explained in Sec-
tion 3.2.4. The other networks gave very similar results, so for the sake of keeping this
section concise we only display results for the networks with w = 64 and d = 5. The
best-so-far lines in Figure 6.2 show the lowest loss found up until each trial, which seem

CHAPTER 6. RESULTS AND DISCUSSION 54

0 20 40
Trial

−0.550

−0.525

−0.500

−0.475

−0.450

−0.425

−0.400

M
S

E
Policy network convergence

Loss per trial

Best so far

0 20 40
Trial

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

M
S

E

Value network convergence

Loss per trial

Best so far

Figure 6.2: Convergence of the hyperparameter tuning algorithm for a policy network
(left display) and a value network (right display), both with w = 64 and d = 5.

to have converged sufficiently. From the hyperparameter importance in Figure 6.3 we ob-
serve that the learning rate is the most important hyperparameter to tune appropriately.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Permutation importance

Batch size

Weight decay

Learning rate

Hyperparameter importance for policy and value networks

fπ,(64,5)

fv,(64,5)

Figure 6.3: Permutation importance from hyperparameter tuning for the policy and
value networks with d = 5 convolutional layers and w = 64 filters per layer.

6.2.2 Training and Validation

We now show the learning dynamics of the eight networks, starting with the four policy
networks. Figure 6.4 displays the training and validation losses over epochs for the four
policy networks. An important observation here is that the validation losses are slightly
lower than the training losses, especially in the first epochs. We assume this to be due to

CHAPTER 6. RESULTS AND DISCUSSION 55

the regularization termR(θ), which is added during training but not in validation. As the
number of epochs increases, the training loss stabilizes, indicating that the training pro-
cedure has converged. The validation losses do not increase towards the end, hence there
are no signs of overfitting. For further analysis, we use the policy networks corresponding
to Epoch 15 in Figure 6.4, as these provide the lowest validation loss.

2 4 6 8 10 12 14
Epoch

0.9

1.0

1.1

1.2

1.3

1.4

1.5

L
os

s

Training (full lines) and validation loss (stapled lines) for policy networks

Policy network

fπ,(32,5)

fπ,(32,10)

fπ,(64,5)

fπ,(64,10)

Figure 6.4: Training loss, Lπ = LCE +R, and validation loss, LCE, over training epochs
for each of the four policy network architectures with width w ∈ {32, 64} and depth
d ∈ {5, 10}. Training losses are full lines, validation losses are stapled lines.

To obtain a better interpretation of how accurate the policy networks are, we calculate
Top-1 and Top-3 accuracy metrics on the validation set. Recall from (3.12) in Section 3.2.3
that this involves calculating the frequency of which the correct action is in the Top-1
and Top-3 actions with highest probability assigned by the policy network, based on
the validation data. The results are shown in the left and right displays of Figure 6.5,
respectively. The best-performing network achieved a Top-1 validation accuracy of around
0.66 and a Top-3 accuracy above 0.90. This indicates that the networks are able to learn
patterns from the data, each classifying the correct action over 50% of the time.

Finally, we investigate the calibration of the policy networks. This is done by com-
paring the Top-1 accuracy and the Top-1 probabilities, split on the number of remaining
moves. Top-1 probability is the highest probability assigned to any action on a given
board by the policy network. Calibration can be interpreted as the networks having an
appropriate level of “confidence”, meaning that the probabilities they assign to the Top-1
action matches well with how often their predictions are correct.

The calibration plot for the policy network with w = 64 and d = 10 is presented in
Figure 6.6. Here, we observe that the Top-1 accuracy follows the distribution of Top-1
probabilities quite closely, overlapping with the mean probability for all Ti ≤ 15. This
indicates that the network is properly calibrated: on average, it neither overshoots nor
undershoots the probability of its prediction being correct. The Top-1 metrics are lower
for higher Ti, which makes sense, since there are more actions to choose from. We also
notice a bimodal pattern in the distribution of Top-1 probabilities for the lower move
counts, especially for Ti = 3. This is likely caused by there being a duality among the
possible solutions for states when few moves remain: either there is one correct action,

CHAPTER 6. RESULTS AND DISCUSSION 56

5 10 15
Epoch

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

T
op

-1
ac

cu
ra

cy
Top-1 validation accuracy

5 10 15
Epoch

0.82

0.84

0.86

0.88

0.90

T
op

-3
ac

cu
ra

cy

Top-3 validation accuracy

Policy network

fπ,(32,5) fπ,(32,10) fπ,(64,5) fπ,(64,10)

Figure 6.5: Top-1 (left) and Top-3 (right) accuracy on the validation set, for each of the
four policy networks with width w ∈ {32, 64} and depth d ∈ {5, 10}.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Remaining moves

0.0

0.2

0.4

0.6

0.8

1.0

T
op

-1
p

ro
b

ab
il

it
y

Distribution of Top-1 probabilities and accuracy by difficulty

Top-1 accuracy

Figure 6.6: Distributions of Top-1 probabilities (violins) and Top-1 accuracy (green
line) by board difficulty (remaining moves until the board is cleared). This is based on
the policy network with w = 64 and d = 10. Top-1 probability is the highest probabil-
ity assigned by the policy network to an action on a board, and Top-1 accuracy is the
frequency of correct predictions. The center horizontal lines on the violins are the mean
Top-1 probabilities.

CHAPTER 6. RESULTS AND DISCUSSION 57

in which case the network assigns a high probability to that action, or there are two or
three equally good actions, in which case the probabilities are spread out, with one action
being assigned a slightly higher probability. Although we do not show the plots here, the
other networks gave similar results.

Next, we monitor the training and validation of the four value networks. We start by
plotting losses over epochs, shown in Figure 6.7. The training losses in the left display
seem to have converged sufficiently for our purpose, for all four networks. Validation losses
converge in a somewhat jagged manner, but none increase by a substantial amount for
higher epochs, indicating that we did not overfit to the training data. For the remainder
of this chapter, we use the four value networks associated with the final epoch.

5 10 15
Epoch

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

T
ra

in
in

g
lo

ss

Training loss over epochs

5 10 15
Epoch

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

M
S

E

Validation loss over epochs

Value network

fv,(32,5) fv,(32,10) fv,(64,5) fv,(64,10)

Figure 6.7: Training loss, Lv = LMSE + R, and validation loss, LMSE, over training
epochs for each of the four value networks.

We analyze the precision of the value network with d = 10 and w = 64 by plotting the
distributions of predicted number of remaining moves against the actual number for all
samples in the validation data. The results are shown in Figure 6.8. Here, the orange line
highlights where the actual number of moves used by beam search equals the predicted
remaining number of moves, hence a perfectly accurate model would always lie on the
orange line. We observe that the network is more accurate in its predictions the fewer
moves that actually remain, which is as expected since there is less room for error. The
tails of the distributions are heavier the more difficult the board is, and there is some
overlap between the distributions for the higher moves. In particular, for difficult boards,
the predictions typically lie within 1 to 2 moves from the mean, but up to 4 moves
in the worst cases. Still, the means increase steadily, indicating that the network on
average distinguishes between boards of different difficulties. Note also that the network
undershoots the number of moves remaining for the most difficult boards. This is likely
due to the data being slightly biased towards a lower number of remaining moves, as we
observed from the distribution of move counts in Figure 5.3.

CHAPTER 6. RESULTS AND DISCUSSION 58

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Actual remaining moves

0

5

10

15

20
P

re
d

ic
te

d
re

m
ai

n
in

g
m

ov
es

Distribution of predicted remaining moves by actual moves

Perfect prediction

Figure 6.8: Distributions of predicted remaining number of moves (violins) versus the
actual number of remaining moves, based on validation data. Predictions are made by
the value network with w = 64 and d = 10. The orange line highlights where prediction
equals the actual remaining moves in the dataset generated by beam search.

6.2.3 Evaluation

All eight networks were evaluated on the same 1 000 randomly generated boards
as the self-made heuristics in Section 6.1, that is, using np.random.randint with
np.random.seed(22). Evaluation was performed through greedy play with the networks
as heuristics. For value networks, this means that we use fv to estimate the number of
moves remaining after performing each action, and choose the action leading to the lowest
prediction. For policy networks, we choose the action with maximum probability assigned
by fπ. As in Section 6.1, the number of moves used and the time taken per board per
network were recorded.

Aggregate results are presented in Table 6.4, and full distributions of move counts are
shown in Figure 6.9. From these, we notice that the value networks on average perform
better than policy networks, but at the cost of a higher runtime. This is as expected,
considering that greedy play with value networks involve looking one step ahead, which
requires more network evaluations but leads to better performance on its own. We also
observe from Table 6.4 that the standard deviations are lower for policy networks than the
value ones, and that the worst-case, maximum move counts are lower. This likely occurs
because of the inaccuracy of value networks on more difficult boards, which we observed
in Figure 6.8. It is not uncommon for value networks to predict move counts that deviate
by 1 to 2 moves from the mean, which in the worst case can cause a repeating series of
difficult boards: if many moves remain and the value network suggests the wrong action,
the next board is essentially as difficult as the previous, which may lead to another poor
choice of action, and so on. In the worst cases, this leads to a large deviation from the
best-known solution. If the value network is quick to escape the difficult boards, however,
it is accurate on the easier boards, and more likely finds the correct choices of actions.

CHAPTER 6. RESULTS AND DISCUSSION 59

Table 6.4: Aggregate performance of neural networks from greedy play on 1 000 randomly
generated boards.

Policy network performance

Model Mean moves Std. Dev. Time per board (ms)

fπ,(32,5) 16.25 1.83 6.2
fπ,(32,10) 15.87 1.73 9.8
fπ,(64,5) 15.97 1.77 8.6
fπ,(64,10) 15.73 1.76 12.5

Value network performance

Model Mean moves Std. Dev. Time per board (ms)

fv,(32,5) 15.57 1.87 101
fv,(32,10) 15.56 1.96 179
fv,(64,5) 15.35 1.85 149
fv,(64,10) 15.34 1.92 285

fπ,(32,5) | fv,(32,5) fπ,(32,10) | fv,(32,10) fπ,(64,5) | fv,(64,5) fπ,(64,10) | fv,(64,10)

10

12

14

16

18

20

22

24

N
u

m
b

er
of

m
ov

es
to

cl
ea

r
b

oa
rd

Move distribution by policy (green) and value networks (red)

Figure 6.9: Distribution of move counts from greedy gameplay using policy and value
networks, on 1 000 randomly generated Former boards. Green distributions belong to
policy networks, and red distributions belong to value networks.

CHAPTER 6. RESULTS AND DISCUSSION 60

Compared to self-made heuristics, Table 6.4 shows that neural networks performed
better when used in greedy play. All networks used substantially fewer moves than the 1
look-ahead heuristic, which we observed from Table 6.1 that on average used 18.54 moves
to clear a board. All but the lightest policy network also beat the 2 look-ahead heuristic,
which used 16.21 moves. The two value networks with w = 64 filters per layer even
outperformed the 3 look-ahead heuristic, which used 15.48 moves on average and more
than 10 times the runtime. This shows that the networks successfully learned a better
strategy by imitating beam search with supervised learning.

We further analyze the policy and value networks through greedy play on the 100 daily
boards. Again, the purpose of the models is not to solve the boards correctly, as they are
meant to guide search techniques by being accurate and fast at board evaluations. Still,
this comparison gives an indication as to how the networks perform on their own, which is
relevant for how they might perform when used in a solver. As with the self-made heuristic
models, we display the number of boards per difference to the best-known solutions, which
are shown in Table 6.5. The policy network with w = 64 and d = 10 performed the best
among the policy models, solving 8 out of 100 boards correctly. Policy networks were
outperformed by value networks, the best of which being the ones with w = 64, solving
20 boards with greedy play. As discussed, this is to be expected considering that the
greedy play with value networks involves a look-ahead strategy, at the cost of longer
runtime.

Table 6.5: The number of boards per solution found by each supervised learning model
through greedy play, measured in difference to the best-known solution, ∆.

Number of solutions per ∆ (supervised learning models)

Model ∆ = 0 ∆ = 1 ∆ = 2 ∆ = 3 ∆ = 4 ∆ ≥ 5

fπ,(32,5) 5 16 31 27 14 7
fπ,(32,10) 6 24 36 23 8 3
fπ,(64,5) 5 21 32 25 13 4
fπ,(64,10) 8 30 34 21 6 1
fv,(32,5) 14 34 28 13 7 4
fv,(32,10) 12 32 29 16 4 7
fv,(64,5) 20 45 17 11 7 0
fv,(64,10) 20 43 20 14 1 1

6.3 Proximal Policy Optimization
This section presents the results of using PPO to train reinforcement learning agents. We
first monitor the training of the PPO algorithm, before we evaluate the actor and critic
networks through greedy play on randomly generated and daily boards.

6.3.1 Training

To monitor the training process, we plot the reward obtained by the PPO models over
time. This is shown in Figure 6.10, along with a moving average of both reward curves.
Here, we observe that the average reward per episode R̄ is initially as low as R̄ = −27,

CHAPTER 6. RESULTS AND DISCUSSION 61

which coheres well with random gameplay (Table 6.1). The rewards obtained over the
course of both training procedures steadily increase over time. After 4 days of training,
the average reward has stabilized just above R̄ = −16 for both models, meaning that
the actor networks use less than 16 moves to clear a board on average. The smaller
model converges faster due to quicker evaluations, which allows it to play more games in
a shorter period of time than the larger model. In return, the larger model eventually
reach a slightly higher mean reward.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Training time (days)

−26

−24

−22

−20

−18

−16

M
ea

n
ep

is
o
d

e
re

w
ar

d
,
R̄

Mean reward per episode over time

Loss, (64, 10)

Moving average, (64, 10)

Loss, (32, 5)

Moving average, (32, 5)

Figure 6.10: Mean episode reward, R̄, over training time for both PPO training proce-
dures. The stapled lines are moving averages of the reward curves, calculated using a 1
hour window centered at the respective time step.

Next, we plot each component in the PPO objective function defined in (3.23), that is,
the actor loss, the critic loss and the negative entropy bonus, for both training procedures
over time (Figure 6.11). We observe that there are fluctuations in the actor losses, but
that these over time stabilize around zero. The critic losses decrease and flatten out over
time, which is a sign of convergence. The entropy bonuses increase rapidly at the start,
which is because the actors to begin with suggest actions quite randomly, and thus attain
a high entropy. As the models learn how to play the game, it becomes more certain in its
actions, thus more deterministic the probability distribution and the lower the entropy
bonus. Since we set the entropy coefficient cent = 0, the negative bonus is not part
of the training objective, and hence it does not decrease as time passes. However, the
entropy bonuses not being very close to 0 indicate that the actor models encourage some
exploration despite not being optimized to do so.

Finally, we check the calibration of the critics with respect to the actors. This is done
by playing 10 000 games greedily with each actor, and for every state in every game, we
store the prediction of the corresponding critic and the number of moves remaining based
on the outcome of the game. This allows us to monitor how accurately each critic predicts
the performance of the corresponding actor. We plot the distributions of the predictions
for each number of remaining moves less than or equal to 20 for the (64, 10) critic in
Figure 6.12. The smaller critic gave similar results. Here, the orange line represents
where a perfectly calibrated and unbiased actor would predict, that is, the line where
prediction equals the actual outcome. The displayed results indicate that the critic is
very accurate when few moves remain, and becomes less and less accurate as the number

CHAPTER 6. RESULTS AND DISCUSSION 62

0 2 4

Training time (days)

0.0

0.1

0.2

0.3

0.4

0.5
A

ct
or

lo
ss

,
L C

L
IP

(θ
)

Actor loss over time

0 2 4

Training time (days)

0

1

2

3

4

C
ri

ti
c

lo
ss

,
L V

(φ
)

Critic loss over time

0 2 4

Training time (days)

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

E
n
tr

op
y

lo
ss

,
−
H

(θ
)

Entropy loss over time

Loss curves

Loss, (64, 10) Moving average, (64, 10) Loss, (32, 5) Moving average, (32, 5)

Figure 6.11: Actor loss (left), critic loss (middle), and negative entropy bonus (right),
over training time, for networks with (w, d) ∈ {(32, 5), (64, 10)}.

of moves increases. This is similar to the value network accuracy in Figure 6.8. We also
notice that the critic systematically predicts a lower number of moves remaining than
what the actor actually uses, especially when more moves remain, which is remarkably
similar to the pattern in Figure 6.8. This is likely caused by two things: Firstly, like in
Figure 6.8, when the model generates data by playing many games, the collected data will
be more biased towards easier boards, since these appear in all games. Secondly, which
we hypothesize is the reason why the deviation is even greater for the PPO critic, is that
the temporal difference factor λ = 0.95 is less than one, as we discussed in Section 6.3.1.
Because of this, during training, when we minimize the MSE against R̂t defined in (3.19),
we minimize against estimates that are slightly biased towards lower move counts, leading
to an even larger bias in the predictions of the critic.

6.3.2 Evaluation

We use the same procedure for evaluating the PPO-based models as we did for the super-
vised learning-based ones. That is, we play greedily with the two actors and critics on the
two datasets, and monitor the number of moves per board and time used. The aggregate
results from gameplay on the 1 000 randomly generated boards are presented in Table 6.6,
and the full distributions of move counts are shown in Figure 6.13. The (64, 10) actor
used fewer moves on average than the (32, 5) actor, although the latter performed better
in the best and worst cases. This might just be up to random noise. The large actor used
15.76 moves on average to clear a board, which is better than the look-ahead heuristics
(Table 6.1) and three of the supervised learning-based policy networks (Table 6.4). It
is, however, slightly worse than the supervised learning-based model of same size. The
smaller actor used 15.95 moves on average, thus performing better than the corresponding
policy network trained with supervised learning. The runtime is approximately the same
as for the supervised learning-based models, albeit slightly longer for the largest PPO
actor. Greedy play with the (32, 5) and (64, 10) critics used 15.26 and 15.11 moves on
average, respectively, which is substantially lower than any of the heuristics and value
networks, in addition to having a lower runtime than the policy networks of the same
respective sizes. The maximum number of moves used by the large critic is also lower
than any other network or heuristic, using at most 20 moves to solve a board. Their run-

CHAPTER 6. RESULTS AND DISCUSSION 63

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Actual remaining moves

0

5

10

15

20
P

re
d

ic
te

d
re

m
ai

n
in

g
m

ov
es

Actor-critic calibration

Perfect calibration

Figure 6.12: Actor-critic calibration for the PPO model with w = 64 and d = 10.
Calibration shows the distribution of predicted moves by the critic per actual remaining
number of moves, obtained through greedy play with the actor on 10 000 boards. The
orange line is where the predicted remaining moves equals the actual remaining moves
from greedy gameplay with the actor.

times also improve on that of the supervised learning models of similar sizes, and hence
we would expect these models to perform well when combined with search techniques.

Table 6.6: Aggregate performance of the PPO actors and critics from greedy play on
1 000 randomly generated boards.

PPO actor and critic performance

Model Mean moves Std. Dev. Time per board (ms)

πθ,(32,5) 15.95 1.80 6
πθ,(64,10) 15.76 1.79 17
vϕ,(32,5) 15.26 1.82 63
vϕ,(64,10) 15.11 1.73 235

Next, we evaluate the performance of the PPO actors and critics on the set of 100
daily boards by comparing greedy play results to the best-known solutions. Recall that,
although the purpose of these models is not to perfectly solve boards, the deviance from
the best solution is a measure of accuracy and thus an indication of how they will perform
with search techniques. As in the previous sections, the number of boards per difference
is recorded, which we show in Table 6.7. Once again, the value models perform better
than the policy models, which is due to the look-ahead strategy involved in greedy play.
The small and large critics solved 19 and 21 boards correctly, respectively, which is about
the same as the performance of the best value networks shown in Table 6.5, at 20 boards.
In the worst cases, however, the critics perform worse, solving 11 and 9 boards with

CHAPTER 6. RESULTS AND DISCUSSION 64

πθ,(32,5) | vφ,(32,5) πθ,(64,10) | vφ,(64,10)

10

12

14

16

18

20

22

24

N
u

m
b

er
of

m
ov

es
to

cl
ea

r
b

oa
rd

Actor and critic move distributions

Figure 6.13: Distribution of move count for greedy gameplay with the actor and critic
models trained with PPO, over 1 000 randomly generated Former boards. Each violin
shows the distributions of move counts for the actor πθ,(w,d) (left half) and the critic vϕ,(w,d)

(right half) in each PPO network.

∆ ≥ 5, compared to 4 and 2 for the supervised learning-based value networks of the
same sizes (Table 6.5). The same is also the case for the performances of the actors. The
(32, 5) actor solved 14 boards and the (64, 10) actor solved 11 boards with ∆ = 0, which
is a significant improvement from the 8 boards correctly solved by the best supervised
learning-based policy network. But in the worst cases, the actors solved 14 and 9 boards
with ∆ ≥ 5, compared to 7 and 2 by the supervised learning-based policy networks.
These results show that the PPO agents have learned strategies that are effective on
some boards, but perhaps not as generalizable as those of the supervised learning models,
leading to better performance in the best case and worse in the worst case.

Table 6.7: The number of boards per solution found by each PPO-based model, measured
in difference to the best-known solution, ∆.

Number of solutions per ∆ (PPO models)

Model ∆ = 0 ∆ = 1 ∆ = 2 ∆ = 3 ∆ = 4 ∆ ≥ 5

πθ,(32,5) 14 22 23 17 10 14
πθ,(64,10) 11 26 23 15 16 9
vϕ,(32,5) 19 31 13 15 11 11
vϕ,(64,10) 21 27 23 13 7 9

6.4 Search Techniques
In this section, we present the results of using MCTS and beam search with self-made
heuristics and neural networks to solve Former boards. Recall that self-made heuristics,
supervised learning-based networks, and PPO-based networks are referred to as models,

CHAPTER 6. RESULTS AND DISCUSSION 65

which make predictions based on a given board. Once combined with search techniques,
we refer to them as solvers, whose purpose is to find solutions that use as few moves as
possible.

The section is split into two parts. First, we check the performance of each solver on
the same 1 000 randomly generated boards we have used in the previous two sections. In
the second part, we run each solver on the dataset containing 100 official Former boards.
Since we have the best-known solution to each board, this allows us to truly check how
close our solvers are to solving Former .

6.4.1 Performance on Random Boards

We run each MCTS and beam search solver on the same 1 000 randomly generated boards
used in the previous sections. For each run, we set a time limit of tmax = 10 seconds per
board and record the time stamp and solution length for each solution found. Using this,
we calculate the best-so-far solution, that is, the average best solution up to time t for
t ∈ [0.5, 10] seconds, per solver. We do not plot the best-so-far solution for t < 0.5 seconds
since the first solutions found by each model typically are the easiest boards, with a lower
than average move count, and thus the average solution does not represent the entire
dataset for low values of t.

0.0 2.5 5.0 7.5 10.0

Time (s)

14.0

14.5

15.0

15.5

16.0

16.5

17.0

M
ea

n
b

es
t

so
lu

ti
on

MCTS

fπ,(32,5)

fπ,(32,10)

fπ,(64,5)

fπ,(64,10)

πθ,(32,5)

πθ,(64,10)

π1

π2

0.0 2.5 5.0 7.5 10.0

Time (s)

14.0

14.5

15.0

15.5

16.0

16.5

17.0

M
ea

n
b

es
t

so
lu

ti
on

Beam search

fv,(32,5)

fv,(32,10)

fv,(64,5)

fv,(64,10)

vφ,(32,5)

vφ,(64,10)

v1

v2

Mean best-so-far solutions on 1 000 random boards

Figure 6.14: Average best solution found by each MCTS solver (left display) and beam
search solver (right display) within a search time of t ∈ [0.5, 10] seconds. Based on 1 000
randomly generated boards.

The resulting best-so-far curves are shown in Figure 6.14, and aggregate results after
tmax = 10 seconds of search are presented in Table 6.8. From the left and right displays
of Figure 6.14, we observe that the solutions start relatively high and decline quickly as
we let the search continue. The neural network-based solvers significantly outperform
self-made heuristics, particularly when used with MCTS. The heuristics perform better
with beam search, but also here, they are outperformed by the neural networks. This
indicates that the networks indeed have picked up on patterns in Former boards, making

CHAPTER 6. RESULTS AND DISCUSSION 66

them better approximations of the optimal policy and value functions than the self-made
heuristics. The largest PPO actor performed the worst among the network-based MCTS
solvers, which makes sense considering that it was slower and not significantly more
accurate than the other network models (Tables 6.4 and 6.6). What is more surprising
considering the performance on its own, is the largest PPO critic, performing at the
same level as the largest value network, fv,(64,10), despite being faster and more accurate
in initial analysis. Overall, the best-performing solver combined MCTS with fπ,(64,10),
reaching 14.03 moves per board on average with a standard deviation of 1.42 after 10
seconds of search (Table 6.8). This is a significant improvement on the model on its own,
which used 15.73 moves on average with a standard deviation of 1.76 in greedy play on
the same set of boards (Table 6.4). Note that the standard deviation has an unknown
lower bound determined by the variation in the optimal solutions to the boards, which
are unknown.

Table 6.8: Aggregate results after tmax = 10 seconds of search on 1 000 randomly gener-
ated boards with each MCTS and beam search solver.

MCTS solver performances

Incorporated model Mean moves Std. Dev.

π1 14.93 1.56
π2 15.32 1.79

fπ,(32,5) 14.17 1.47
fπ,(32,10) 14.06 1.42
fπ,(64,5) 14.09 1.44
fπ,(64,10) 14.03 1.42
πθ,(32,5) 14.17 1.45
πθ,(64,10) 14.25 1.50

Beam search solver performances

Beam search solver Mean moves Std. Dev.

v1 14.26 1.53
v2 14.38 1.61

fπ,(32,5) 14.14 1.56
fπ,(32,10) 14.27 1.62
fπ,(64,5) 14.10 1.54
fπ,(64,10) 14.22 1.59
vϕ,(32,5) 14.08 1.48
vϕ,(64,10) 14.22 1.56

6.4.2 Performance on Daily NRK Boards

In this section, we present the results of using MCTS and beam search solvers on the set
of 100 daily boards from the official NRK website. The dates and respective boards are
available through the GitHub repository, link in Appendix B.1. As mentioned, each of
these boards has an associated best-known solution, which is the lowest score obtained
by any player that day. The average of these solutions is 13.6 moves, with a standard

CHAPTER 6. RESULTS AND DISCUSSION 67

deviation of 1.36. We first show the average number of moves used by each solver, then
we analyze how far the best solvers deviate from the best-known performance over time,
before we display the total proportion of daily boards solved over time, across all solvers.
Then, we analyze how many equivalent best solutions that exist to a couple handpicked
boards, before attempting to find better solutions than what is known.

0 20 40 60

Time (s)

13.50

13.75

14.00

14.25

14.50

14.75

15.00

15.25

M
ea

n
b

es
t

so
lu

ti
on

MCTS

fπ,(32,5)

fπ,(32,10)

fπ,(64,5)

fπ,(64,10)

πθ,(32,5)

πθ,(64,10)

π1

π2

0 20 40 60

Time (s)

13.50

13.75

14.00

14.25

14.50

14.75

15.00

15.25

M
ea

n
b

es
t

so
lu

ti
on

Beam search

fv,(32,5)

fv,(32,10)

fv,(64,5)

fv,(64,10)

vφ,(32,5)

vφ,(64,10)

v1

v2

Mean best-so-far solutions on 100 daily boards

Figure 6.15: The average best-so-far solution over time for each MCTS and beam search
model. The best-so-far solution at time t is the best solution found by the respective model
up until time t. The black, stapled lines are the average number of moves used in the best
solutions published by NRK, 13.6 moves.

The average best solution per time for the MCTS and beam search solvers are shown
in the left and right displays of Figure 6.15, respectively. The black stapled lines at 13.6
moves indicate the average number of moves used by the best-known solutions. From these
plots, we observe that MCTS with policy networks use fewer moves than the beam search
solvers, reaching as low as 13.74 moves on average after 60 seconds. This is consistent
with the results from evaluation on random boards. There is more randomness involved
in which model performs the best over time compared to on the randomly generated
boards, which is likely due to the dataset being smaller. For MCTS, the heavier policy
networks typically perform better, with the exception of the largest PPO actor. Both PPO
actors performed worse than the other MCTS solvers with network models, which may be
due to the actors being deterministic, and that MCTS alone does not provide sufficient
exploration. This would explain why the best-so-far curves flatten out relatively quickly.
For beam search solvers, the lightest value network, fv,(32,5), performs the best, followed
by fv,(64,5) and the PPO critic. This indicates that lighter networks provide sufficiently
accurate predictions when combined with beam search. Overall, the observations from
Figure 6.15 show that the neural network approaches outperform the self-made heuristics.
This further confirms that the neural networks we train using supervised learning and PPO
are able to learn spatial patterns from Former boards, and make reasonable predictions
based on them.

Next, we monitor how far the solutions deviate from the best-known solutions over

CHAPTER 6. RESULTS AND DISCUSSION 68

time. We find the difference (∆) between the number of moves used by our models and the
best solutions, for each board, given a time constraint tmax ∈ {1, 5, 10, 30, 60}. Table 6.9
presents the number of boards by ∆ and tmax, for the model that solved the most boards
correctly per search technique. With a time constraint of 1 second, the best-performing
beam search model solves 40 out of the 100 boards, beating the best-performing MCTS
model, which solved 31 boards correctly. This is likely due to beam search being faster
in exploring the top recommended actions, whereas MCTS explores each possible action
from the initial state at least Nmin = 10 times before focusing on the most promising
ones. For easier boards, where the value and policy networks approximate v∗ and π∗ well,
such greedy search leads beam search to find the best solution faster than MCTS. For
larger tmax, however, MCTS models consistently outperform beam search models, both
in terms of number of correct solutions and deviation from the best solution. Already
after tmax = 5 seconds, the MCTS models deviate by 2 moves in the worst case, whereas
the beam search model misses the best solution by as much as 4 moves. This pattern is
consistent with what we observed when analyzing the neural networks on their own in
Section 6.2.3, where we found that the policy networks had a lower standard deviation,
which indicates that they more consistently predict a good course of action. As a result,
the solutions found by MCTS rarely deviate significantly from the best solutions, even for
smaller time limits. After tmax = 60 seconds, the best MCTS model solved 86 out of 100
boards correctly, 14 solutions deviated by 1 move, and not a single solution deviated by
2 moves. The best beam search model solved 83 boards correctly, 15 solutions deviated
by 1, and 2 solutions deviated by 2.

Table 6.9: The number of boards solved by the best solver in a search using the same
number of moves as the best solution (∆ = 0), using one more move (∆ = 1), and so on,
for a selection of tmax.

Number of solutions per ∆ and tmax (MCTS)

tmax (s) ∆ = 0 ∆ = 1 ∆ = 2 ∆ = 3 ∆ = 4

1 31 50 14 5 0
5 58 36 6 0 0
10 72 26 2 0 0
30 80 20 0 0 0
60 86 14 0 0 0

Number of solutions per ∆ and tmax (beam search)

tmax (s) ∆ = 0 ∆ = 1 ∆ = 2 ∆ = 3 ∆ = 4

1 40 40 12 4 4
5 55 33 9 1 1
10 62 34 4 0 0
30 77 19 4 0 0
60 83 15 2 0 0

In addition to observing the performance of the best solvers alone, we aggregated
the results from several solvers over time. This allows us to check the proportion of the
daily boards we are able to solve correctly, regardless of which solver found the solution.
This is interesting to check since there is some randomness involved in whether a model

CHAPTER 6. RESULTS AND DISCUSSION 69

finds a solution or not, especially when using MCTS, which samples actions pseudo-
randomly from the policy during simulations. Aggregating over several solvers reduces
the variance caused by such randomness, which hence gives a slightly more balanced view
of the performance of each search technique and the combined performance of our solvers.
In Figure 6.16, we have aggregated the solutions found by MCTS solvers, the solutions
found by beam search solvers, and the solutions found by all solvers combined. Based on
this, we display the proportion of boards solved correctly as a function of time. Here we
observe similar results to what we did in Table 6.9: Beam search performs better than
MCTS during the first seconds, but is eventually overtaken by MCTS, which solves more
boards accurately given a sufficient amount of time. Across all solvers, 73 of the 100 daily
boards were solved in less than a second of search, and 91 were solved before 10 seconds
had passed. After 60 seconds, the beam search models together solved 92 boards, MCTS
models found the solution to 96 boards, and combined, all solvers found the best-known
solutions to 98 out of 100 boards. This shows that modern machine learning techniques
can be used to solve Former . The two boards we did not solve were the ones on February
15th and March 24th. To check if we are able to find the solutions to these boards at
all, we used MCTS with fπ,(64,10) as guidance for 24 hours. With this extended time
limit, we found the best-known solution to the board on February 15th in 10 minutes, but
we never found the solution to the board on March 24th, even after 24 hours of search.
This demonstrates that, while our solvers typically find the best-known solution within a
minute (Figure 6.16), they do not guarantee success on every board.

0 10 20 30 40 50 60

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
or

ti
on

so
lv

ed

Proportion of boards solved across models

Total

MCTS

Beam search

Figure 6.16: Proportion of 100 daily boards solved across models for each search tech-
nique separately, and aggregated across both.

Now that we have analyzed the overall performance of solvers across all boards, we
switch focus to a few hand-picked boards, and investigate how many equivalent best
solutions that exist to them. For each board, we run the MCTS solver with fπ,(64,10) as
guidance until it finds the best-known solution, 1 000 times, and record the initial action
of each solution along with the total number of possible actions from that board. This
allows us to monitor the proportion of actions that can be chosen to obtain the best-
known solution from a given state. We refer to one such action as an optimal action.
After doing this from the initial board, we perform the optimal action that was chosen

CHAPTER 6. RESULTS AND DISCUSSION 70

246810
Moves remaining

0

5

10

15

20

25

30

35

N
u

m
b

er
of

ac
ti

on
s

May 18th

Possible actions

Optimal actions

246810121416
Moves remaining

0

5

10

15

20

25

30

35

N
u

m
b

er
of

ac
ti

on
s

May 19th

Possible actions

Optimal actions

Estimated optimal actions per number of remaining moves

Figure 6.17: The number of possible actions and the number of optimal actions (actions
that lead to a best-known solution) per number of remaining moves for the boards pub-
lished on May 18th (left display) and May 19th (right display). The number of optimal
actions per number of moves remaining is based on 1 000 solutions found using the MCTS
solver with fπ,(64,10) as guidance, along the path of the most frequently found solution.

most frequently among the 1 000 solutions, and find 1 000 new solutions using the lowest
known number of moves from the next board, with the same procedure. By repeating
this for each action along the most “popular” best path, we find a rough estimate of the
number of optimal actions per remaining number of moves. We do this for the boards
published by NRK on May 18th and 19th, which have varying difficulties: the first can be
solved in 11 moves, and the second has 16 as the best-known solution. The number of
optimal and possible actions per number of remaining moves for the two boards is shown
in the left and right displays of Figure 6.17. These plots show that surprisingly large
amounts of initial actions can be taken to obtain the best-known solution: on May 18th,
8 out of 23 moves were optimal, and on May 19th, 14 out of 36. This is likely due to
there being several choices of initial actions that lead to the same board, as discussed in
Section 2.2.2. For both boards, the relative number of optimal actions decreases rapidly.
When 8 moves remain, only 2 out of 20 actions lead to a best solution for the board on
May 18th, and for the board on May 19th, when 7 moves remain, only 1 out of 16 moves
were optimal. This indicates that the middle part of the game is the most crucial, as there
perhaps no longer exist several combinations of actions that lead to the same outcome,
hence it is critical to choose the correct action in order to obtain the best-known solution.
In the final parts of the games, we observe that there are typically 1-2 actions that are
optimal. This supports the hypothesis we made on the bimodal pattern in the policy
network accuracy in Figure 6.6: typically, the network only has 1 or 2 actions when few
moves remain, and hence it either assigns a probability close to 1 or close to 0.5 to the
correct actions.

A common question we were asked while working on this project was: “do you ever
beat the best-known solution?” The answer to this is yes, if we are sufficiently early at

CHAPTER 6. RESULTS AND DISCUSSION 71

work. In our experience, the best solution found among any player on a given day is
typically found within a few hours after the board has been released, which either is due
to there being very many players, some very good players, or because there are more
people like us, using machine learning or other techniques to solve boards quickly. If we
employ our models soon after the release of a new board, however, we are typically the
first to set the best record that day.

Another frequently asked question is related to whether we can be certain that the
best-known solutions are actually the best possible solutions. We cannot be certain of
this without actually searching the entire state space, which is in practice impossible.
However, as a test, we ran MCTS with the fπ,(64,10) network as guidance for 24 hours on
four daily boards: May 17th, May 18th, May 19th, and May 20th, with best-known solutions
of 13, 11, 16 and 13 moves, respectively. On these boards, MCTS found the best-known
solutions in approximately 6, 0.1, 12 and 3 seconds, but did not improve in the remainder
of the 24 hours. Considering that MCTS finds the best-known solutions in only a few
seconds but never improves on them in 24 hours of search, it is reasonable to assume that
the best-known solutions to these boards likely are the best possible solutions.

CHAPTER 6. RESULTS AND DISCUSSION 72

CHAPTER

SEVEN

CONCLUSIONS

7.1 Concluding Remarks
The purpose of this thesis was to solve the single-player puzzle Former by NRK (2024)
with machine learning techniques, and our initial goal was to solve boards in less than a
minute of searching. To do so, we formulated Former as a Markov decision process, and
defined a mathematical solution as finding the optimal policy function π∗ or the optimal
value function v∗. In Former , π∗ corresponds to the strategy that always clears the board
in the fewest number of moves possible, and v∗ corresponds to the number of moves
remaining if the player acts according to π∗. These two functions were approximated by
the use of three distinct approaches: by crafting self-made heuristics, by training policy
and value networks on self-generated data, and by using Proximal Policy Optimization
(PPO), a state-of-the-art reinforcement learning technique. In greedy play, where we
at each step choose the best action according to model predictions, the neural network-
based models significantly outperformed the self-made heuristics. The largest PPO critic
performed the best, on average solving Former boards in 15.11 moves through greedy
play.

We also formulated solving Former as a search problem, and used Monte Carlo Tree
Search (MCTS) and beam search guided by the approximated policy and value functions
to search for solutions to a variety of boards. Our findings show that modern machine
learning methods combined with search techniques efficiently solve most Former boards,
in total finding the best solution to 73% of boards in less than a second and 98% in less
than a minute of searching, thus exceeding our initial goal. Neural networks obtained
from supervised learning and PPO significantly outperformed any self-made heuristic we
crafted, showing the efficiency of neural networks to approximate optimal policy and
value functions. Among the individual solvers, MCTS with policy networks as guidance
generally performed the best, with the policy network consisting of 10 layers and 64 filters
per layer being the best at 14.03 moves on average to clear a board. On the daily boards,
all top 3 solvers combined MCTS with policy networks, solving up to 86 out of 100 boards
by themselves in less than a minute.

73

CHAPTER 7. CONCLUSIONS 74

7.2 Future Work
Throughout the work on this thesis, we experimented with several different approaches
to solving Former , many of which did not work. Some of these, such as brute-force
search, are simply unfeasible due to the large state space, but other methods may work
given enough time and efficient implementation. These are prospective methods for future
work. In particular, we tried using an AlphaZero-inspired approach (Silver et al., 2018),
where MCTS is used as a planner, that plays thousands of games, generating probability
distributions over actions based on each search. These distributions are in turn used to
update the weights of a dual-head network, which again is used to generate more data, in
a typical model-based reinforcement learning manner. The main caveat of this method is
that it requires training for a very long time, which hindered us from attaining the results
we were hoping for. However, given efficient coding, sufficient computational power, and
more time at hand, we believe that this approach may outperform what we have achieved
in this thesis.

Another topic for future work is to expand on our current methodology. Due to the
limited resources devoted to this work, we did not spend a significant amount of time tun-
ing the parameters in PPO, testing more network architectures in the supervised learning
setting, or attempting other methods of generating data. If done correctly, such fine-
tuning of our methods could lead to improved performance on Former boards, perhaps
solving all 100 boards in less than a minute, and not just 98. Additionally, in this thesis,
our focus was on the use of MCTS and beam search as search techniques, but there are
many other alternatives that may perform well given the proper models to guide them.
One idea is to use classical pathfinding algorithms such as A* (Hart et al., 1968) and
IDA* (Korf, 1985), and another option is to use swarm-intelligence techniques such as
Ant Colony Optimization (Dorigo et al., 2007) and the Grey Wolf Optimizer (Mirjalili
et al., 2014). Each of these could be combined with our neural network models and may
prove efficient for the problem of solving Former .

As an alternative next step, the methods developed in this thesis are applicable to
other games as well. Although many well-known games have already been tried and
solved by similar methods, new puzzles emerge quite frequently, most of which inherit
the same competitive and strategic aspects as Former , making them prime targets for
modern machine learning techniques.

REFERENCES

Agostinelli, F., McAleer, S., Shmakov, A., & Baldi, P. (2019). Solving the rubik’s cube
with deep reinforcement learning and search. Nature Machine Intelligence, 1 (8),
356–363. https://doi.org/10.1038/s42256-019-0070-z

Altmann, A., Toloşi, L., Sander, O., & Lengauer, T. (2010). Permutation importance: A
corrected feature importance measure. Bioinformatics, 26 (10), 1340–1347. https:
//doi.org/10.1093/bioinformatics/btq134

Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for hyper-
parameter optimization. Advances in Neural Information Processing Systems,
24, 2546–2554. https : / / papers . nips . cc / paper _ files / paper / 2011 / file /
86e8f7ab32cfd12577bc2619bc635690-Paper.pdf

Berner, C., Brockman, G., Chan, B., Cheung, V., Cheung, J., Dennison, L., Farhi, D.,
Fischer, Q., Hashme, S., Hesse, C., et al. (2019). Dota 2 with large scale deep rein-
forcement learning. Proceedings of the 2019 International Conference on Machine
Learning. https://doi.org/10.48550/arXiv.1912.06680

Bisiani, R. (1987). Beam search. In S. C. Shapiro (Ed.), Encyclopedia of artificial intelli-
gence (pp. 56–58). John Wiley & Sons.

Breiman, L. (2001). Random forests. Machine learning, 45, 5–32. https://doi.org/10.
1023/A:1010933404324

Brochu, E., Cora, V. M., & De Freitas, N. (2010). A Tutorial on Bayesian Optimization of
Expensive Cost Functions, with Application to Active User Modeling and Hierar-
chical Reinforcement Learning. arXiv. https://doi.org/10.48550/arXiv.1012.2599

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen, P.,
Tavener, S., Perez, D., Samothrakis, S., & Colton, S. (2012). A survey of monte
carlo tree search methods. IEEE Transactions on Computational Intelligence and
AI in games, 4 (1), 1–43. https://doi.org/10.1109/TCIAIG.2012.2186810

Cliff, A. D., & Ord, J. K. (1981). Spatial processes : Models & applications. Pion.
Coulom, R. (2006). Efficient selectivity and backup operators in monte-carlo tree search.

International conference on computers and games, 72–83. https ://doi .org/10 .
1007/978-3-540-75538-8_7

Cover, T. M., & Thomas, J. A. (2005). Entropy, relative entropy, and mutual information.
In Elements of information theory (pp. 13–55). John Wiley & Sons. https://doi.
org/10.1002/0471200611.ch2

Dorigo, M., Birattari, M., & Stutzle, T. (2007). Ant colony optimization. IEEE compu-
tational intelligence magazine, 1 (4), 28–39. https://doi.org/10.1109/MCI.2006.
329691

Fawzi, A., Balog, M., Huang, A., Hubert, T., Romera-Paredes, B., Barekatain, M.,
Novikov, A., R. Ruiz, F. J., Schrittwieser, J., Swirszcz, G., et al. (2022). Discov-

75

https://doi.org/10.1038/s42256-019-0070-z
https://doi.org/10.1093/bioinformatics/btq134
https://doi.org/10.1093/bioinformatics/btq134
https://papers.nips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://papers.nips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://doi.org/10.48550/arXiv.1912.06680
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.48550/arXiv.1012.2599
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1007/978-3-540-75538-8_7
https://doi.org/10.1007/978-3-540-75538-8_7
https://doi.org/10.1002/0471200611.ch2
https://doi.org/10.1002/0471200611.ch2
https://doi.org/10.1109/MCI.2006.329691
https://doi.org/10.1109/MCI.2006.329691

REFERENCES 76

ering faster matrix multiplication algorithms with reinforcement learning. Nature,
610 (7930), 47–53. https://doi.org/10.1038/s41586-022-05172-4

Fisher, R. A. (1970). Statistical methods for research workers. In Breakthroughs in statis-
tics: Methodology and distribution (pp. 66–70). Springer. https://doi.org/10.1007/
978-1-4612-4380-9_6

Flatwhite Studios. (2024). Spotle. Retrieved June 7, 2025, from https://spotle.io/
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic de-

termination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4 (2), 100–107. https://doi.org/10.1109/TSSC.1968.300136

Ho, J., & Ermon, S. (2016). Generative adversarial imitation learning. Advances in neural
information processing systems, 29. https://doi.org/10.48550/arXiv.1606.03476

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training
by reducing internal covariate shift. International conference on machine learning,
448–456. https://doi.org/10.48550/arXiv.1502.03167

Jais, I. K. M., Ismail, A. R., & Nisa, S. Q. (2019). Adam optimization algorithm for wide
and deep neural network. Knowl. Eng. Data Sci., 2 (1), 41–46. https://doi.org/10.
17977/um018v2i12019p41-46

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunya-
suvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al. (2021). Highly ac-
curate protein structure prediction with alphafold. Nature, 596, 583–589. https:
//doi.org/10.1038/s41586-021-03819-2

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv.
https://doi.org/10.48550/arXiv.1412.6980

Kocsis, L., & Szepesvári, C. (2006). Bandit based monte-carlo planning. European con-
ference on machine learning, 282–293. https://doi.org/10.1007/11871842_29

Konda, V., & Tsitsiklis, J. (1999). Actor-critic algorithms. Advances in neural information
processing systems, 12. https://papers.nips.cc/paper/1786-actor-critic-algorithms

Korf, R. E. (1985). Depth-first iterative-deepening: An optimal admissible tree search.
Artificial Intelligence, 27 (1), 97–109. https ://doi .org/10 .1016/0004- 3702(85)
90084-0

Korf, R. E. (1997). Finding optimal solutions to rubik’s cube using pattern databases.
Proceedings of the National Conference on Artificial Intelligence (AAAI), 700–
705. http://www.aaai.org/Library/AAAI/1997/aaai97-109.php

Lin, M., Chen, Q., & Yan, S. (2013). Network in Network. arXiv. https://doi.org/10.
48550/arXiv.1312.4400

LinkedIn. (2024). Queens. Retrieved June 7, 2025, from https ://www. linkedin . com/
games/queens

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in engi-
neering software, 69, 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., &
Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning.
International conference on machine learning, 1928–1937. https ://doi .org/10 .
48550/arXiv.1602.01783

NRK. (2024). Former (M. Folkestad, K. A. Andersen, M. V. Feiring, R. Rognan, & J. S.
Jensen, Eds.). Retrieved June 7, 2025, from https://www.nrk.no/spill/former

Odland, T. (2024). Solving nrk’s game former. Retrieved May 14, 2025, from https://
tommyodland.com/articles/2024/solving-nrks-game-former/

https://doi.org/10.1038/s41586-022-05172-4
https://doi.org/10.1007/978-1-4612-4380-9_6
https://doi.org/10.1007/978-1-4612-4380-9_6
https://spotle.io/
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.48550/arXiv.1606.03476
https://doi.org/10.48550/arXiv.1502.03167
https://doi.org/10.17977/um018v2i12019p41-46
https://doi.org/10.17977/um018v2i12019p41-46
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1007/11871842_29
https://papers.nips.cc/paper/1786-actor-critic-algorithms
https://doi.org/10.1016/0004-3702(85)90084-0
https://doi.org/10.1016/0004-3702(85)90084-0
http://www.aaai.org/Library/AAAI/1997/aaai97-109.php
https://doi.org/10.48550/arXiv.1312.4400
https://doi.org/10.48550/arXiv.1312.4400
https://www.linkedin.com/games/queens
https://www.linkedin.com/games/queens
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.48550/arXiv.1602.01783
https://doi.org/10.48550/arXiv.1602.01783
https://www.nrk.no/spill/former
https://tommyodland.com/articles/2024/solving-nrks-game-former/
https://tommyodland.com/articles/2024/solving-nrks-game-former/

REFERENCES 77

Ogundokun, R. O., Maskeliunas, R., Misra, S., & Damaševičius, R. (2022). Improved cnn
based on batch normalization and adam optimizer. International Conference on
Computational Science and Its Applications, 593–604. https://doi.org/10.1007/
978-3-031-10548-7_43

O’Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. https:
//doi.org/10.48550/arXiv.1511.08458

Pearl, J., & Korf, R. E. (1987). Search techniques. Annual Review of Computer Science,
2 (1), 451–467. https://doi.org/10.1146/annurev.cs.02.060187.002315

Puterman, M. L. (1990). Markov Decision Processes. Handbooks in Operations Research
and Management Science, 2, 331–434. https://doi.org/10.1016/S0927-0507(05)
80182-3

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., & Dormann, N. (2021).
Stable-baselines3: Reliable reinforcement learning implementations. Journal of Ma-
chine Learning Research, 22 (268), 1–8. https://github.com/DLR-RM/stable-
baselines3

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by
back-propagating errors. Nature, 323 (6088), 533–536. https://doi.org/10.1038/
323533a0

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,
A., Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual recognition
challenge. International journal of computer vision, 115, 211–252. https://doi.org/
10.1007/s11263-015-0816-y

Russell, S. J., & Norvig, P. (2016). Artificial intelligence: A modern approach. pearson.
Schadd, M. P. D., Winands, M. H. M., van den Herik, H. J., Chaslot, G. M. J. B., &

Uiterwijk, J. W. H. M. (2008). Single-player monte-carlo tree search. Computers
and Games: 6th International Conference, CG 2008, Beijing, China, September
29-October 1, 2008. Proceedings 6, 1–12. https://doi.org/10.1007/978- 3- 540-
87608-3_1

Schulman, J., Moritz, P., Levine, S., Jordan, M., & Abbeel, P. (2015). High-Dimensional
Continuous Control Using Generalized Advantage Estimation. arXiv. https://doi.
org/10.48550/arXiv.1506.02438

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal Policy
Optimization Algorithms. arXiv. https://doi.org/10.48550/arXiv.1707.06347

Shannon, C. E. (1950). Xxii. programming a computer for playing chess. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 41 (314),
256–275. https://doi.org/10.1080/14786445008521796

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrit-
twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Master-
ing the game of go with deep neural networks and tree search. Nature, 529 (7587),
484–489. https://doi.org/10.1038/nature16961

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M.,
Sifre, L., Kumaran, D., Graepel, T., et al. (2018). A general reinforcement learning
algorithm that masters chess, shogi, and go through self-play. Science, 362 (6419),
1140–1144. https://doi.org/10.1126/science.aar6404

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert,
T., Baker, L., Lai, M., Bolton, A., et al. (2017). Mastering the game of go with-
out human knowledge. Nature, 550 (7676), 354–359. https ://doi .org/10.1038/
nature24270

https://doi.org/10.1007/978-3-031-10548-7_43
https://doi.org/10.1007/978-3-031-10548-7_43
https://doi.org/10.48550/arXiv.1511.08458
https://doi.org/10.48550/arXiv.1511.08458
https://doi.org/10.1146/annurev.cs.02.060187.002315
https://doi.org/10.1016/S0927-0507(05)80182-3
https://doi.org/10.1016/S0927-0507(05)80182-3
https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/978-3-540-87608-3_1
https://doi.org/10.1007/978-3-540-87608-3_1
https://doi.org/10.48550/arXiv.1506.02438
https://doi.org/10.48550/arXiv.1506.02438
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.1080/14786445008521796
https://doi.org/10.1038/nature16961
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270

REFERENCES 78

Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical bayesian optimization of
machine learning algorithms. Advances in neural information processing systems,
25. https://doi.org/10.48550/arXiv.1206.2944

Sutton, R. S., & Barto, A. G. (2014). Introduction to reinforcement learning (2nd ed.).
MIT Press.

Świechowski, M., Godlewski, K., Sawicki, B., & Mańdziuk, J. (2023). Monte carlo tree
search: A review of recent modifications and applications. Artificial Intelligence
Review, 56 (3), 2497–2562. https://doi.org/10.1007/s10462-022-10228-y

The New York Times. (2022). Wordle. Retrieved June 7, 2025, from https://www.nytimes.
com/games/wordle

Towers, M., Kwiatkowski, A., Terry, J., Balis, J. U., De Cola, G., Deleu, T., Goulão, M.,
Kallinteris, A., Krimmel, M., KG, A., Perez-Vicente, R., Pierré, A., Schulhoff, S.,
Tai, J. J., Tan, A. J. S., & Younis, O. G. (2024). Gymnasium: A standard interface
for Reinforcement Learning environments. arXiv. https://doi.org/10.48550/arXiv.
2407.17032

United Nations. (2015). Transforming our world: The 2030 agenda for sustainable de-
velopment. Retrieved June 13, 2025, from https://digitallibrary.un.org/record/
3923923?v=pdf

https://doi.org/10.48550/arXiv.1206.2944
https://doi.org/10.1007/s10462-022-10228-y
https://www.nytimes.com/games/wordle
https://www.nytimes.com/games/wordle
https://doi.org/10.48550/arXiv.2407.17032
https://doi.org/10.48550/arXiv.2407.17032
https://digitallibrary.un.org/record/3923923?v=pdf
https://digitallibrary.un.org/record/3923923?v=pdf

APPENDIX

A

DISTRIBUTION OF SHAPES IN THE DAILY BOARDS

Throughout this thesis, we use daily boards to test the performance of different models.
Since machine learning models require large amounts of training data and because daily
boards are reserved for testing, we must obtain training data elsewhere. We hypothesize
that we can generate data for ourselves by sampling from a 2-dimensional discrete uniform
distribution. To confirm this hypothesis, we check that the daily boards are generated in
the same way. This involves hypothesis tests on two important assumptions: that each
individual shape is generated from a uniform distribution (Appendix A.1) and that there
is no correlation between neighboring shapes on the grid (Appendix A.2).

A.1 Hypothesis Test on the Uniform Assumption
Let Xk denote the k-th shape, k = 1, . . . , K, with K = 9 ·7 ·nboards. Here, nboards = 100 is
the number of daily boards that we have used for this purpose. We perform the hypothesis
test

H0 : Xk ∼ DU(0, 3) versus H1 : Xk ̸∼ DU(0, 3),

where DU(0, 3) is the discrete uniform distribution with state space {0, 1, 2, 3}. Let Nj

denote the total number of shapes of type j observed,

Nj =
K∑
k=1

I(Xk = j),

where I(Xk = j) is the indicator function. Under H0, we expect to observe equally many
of each shape, that is,

µ = E[Nj | H0] =
K

4
, j = 0, 1, 2, 3.

Thus, the test statistic

V =
3∑

j=0

(Nj − µ)2
µ

∼ χ2
3 | H0.

From the 100 daily boards, we observe N0 = 1562 pink shapes, N1 = 1606 blue shapes,
N2 = 1561 green shapes, and N3 = 1571 orange shapes, which gives V = 0.85. The
corresponding p-value is then

p = P (V > 0.85 | H0) ≈ 0.84,

79

indicating that we do not reject H0 under any reasonable significance level. Based on
this result, it is reasonable to assume that each shape in the daily board is drawn from a
discrete uniform distribution.

A.2 Hypothesis Test on the Noncorrelation Assump-
tion

To check for spatial correlation, we use a two-step procedure. The purpose of this pro-
cedure is to check if a shape is correlated to its neighbours, which are the (up to) four
adjacently connected shapes. First, we calculate p-values for each board individually,
based on permutation tests with Moran’s I as the test statistic (Cliff & Ord, 1981).
Thereafter, we use Fisher’s combined probability test to combine the 100 p-values into
one, which indicates whether the shapes on the daily boards are correlated (Fisher, 1970).

For a board with 63 shapes, the observed Moran’s I is defined as

Iobs =
63

W
·
∑63

i=1

∑63
j=1wij(xi − x̄)(xj − x̄)∑63

i=1(xi − x̄)2
.

Here, xi ∈ {0, 1, 2, 3} is the shape at index i of the flattened board, x̄ is the average
shape, wij is 1 or 0 depending on whether xi and xj are neighbors or not, and W is the
sum of all wij. The expected value of Moran’s I when there is no spatial correlation is
E[I] = − 1

63−1
= − 1

62
. By using Moran’s I as test statistic, we can formulate the test of

non-correlated shapes as

H0 : I = − 1

62
versus H1 : I > −

1

62
.

We approximate the p-value of this test for each board j, j = 1, . . . , nboards. To do so,
we first calculate the observed statistic Iobs,j based on board j, and then calculate Ir,j for
r = 1, . . . , R based on R = 10 000 permutations of the same board. Then, an estimated
p-value for the test on board j is

pj =

∑R
r=1 I(Ir,j ≥ Iobs,j)

R
.

After calculating all 100 p-values, we combine them to one using the Fisher combined
probability test statistic (Fisher, 1970),

U = −
nboards∑
j=1

ln pj ∼ χ2
2nboards

| H0.

For the 100 daily boards with R = 10 000 permutations each, we obtain U = 206.43.
With U ∼ χ2

200 under H0, this gives a final p-value

ptot = P (U > 206.43 | H0) ≈ 0.36.

Thus, it is reasonable to assume that the neighboring shapes on the daily boards are not
correlated.

Since both the assumption on uniformly sampled shapes and the assumption on non-
correlated shapes within a board hold, we conclude that it is likely that the daily boards
published by NRK are sampled from a discrete uniform distribution.

80

APPENDIX

B

GITHUB REPOSITORY

This appendix includes the link to the GitHub repository in Appendix B.1, where all code
and some relevant data are included. More information about this in the README file.
Additionally, in Appendix B.2, we show some example images with explanation of the
graphical user interface (GUI) for Former that we have implemented, where the player
can choose any of the 100 daily Former games we have used for analysis in this thesis,
or input a custom board. Moreover, the player can select a time limit for MCTS, and
get recommended actions from the best-performing solver that we have created. For
any of this to work, the C++ implementation of the game must be compiled. Further
instructions for this is also in the README-file.

B.1 GitHub Repository Link
Code can be accessed from the link below, where a README file provides further in-
structions.

• https://github.com/espenurheim/FormerMSc.git

Alternatively, to clone the repository directly from the terminal, navigate to the target
directory, and run:

git clone https://github.com/espenurheim/FormerMSc.git
cd FormerMSc

B.2 Play Former with Solver Recommendations
Here we display some screenshots of the Former GUI with explanations. When the
PLAY_FORMER.py file is ran, an interface pops up, where the player can scroll and select
among any of the 100 daily boards, or select a custom board (Figure B.1).

After selecting a board, the player is faced with the game interface (Figure B.2),
which includes a board where each group has a corresponding number, and room for
some information on the right. Initially, this information is the date, the best-known
solution to the corresponding board, and the number of moves used so far. From here,
the player can click on any shape on the board to remove the corresponding group, which
immediately changes the board according to the game physics. Or, the player can type

81

https://github.com/espenurheim/FormerMSc.git

Figure B.1: The initial board-selection display. The player can scroll to select any of
the 100 daily boards used for analysis in this thesis, or select a custom board. The date
and the best-known solution to each board is shown.

any time limit (in seconds) in the box at the bottom of the information page (where we
in Figure B.2 have typed ‘1’), and perform a search with MCTS plus the fπ,(64,10) solver
with the given time limit. The game can also be reset to its initial board at any time.

After entering a time limit and pressing “Search”, MCTS searches for the given time
limit, before it outputs a recommended action and the maximum number of remaining
moves if its recommendation is followed. This is displayed in Figure B.3. From here, the
player can select an action or perform a new search with any time limit if the number
of moves remaining is not satisfactory. If the recommended move is chosen, the recom-
mended group is immediately updated to the next action in the sequences of actions
found by MCTS, as shown in Figure B.4. If the recommended action is not chosen,
the recommended tab disappears, and the player must start a new search to obtain a
recommendation.

82

Figure B.2: The GUI after selecting the May 18th board in the initial board-selection
display. The colored part of the screen is the selected board, where each group of shapes
has been assigned its own number. On the right, information on what date it is, the
best-known solution for the current board, and the number of moves used, are shown.
Additionally, the player can run a MCTS solver with any time limit (in seconds), and
obtain a recommended choice of action.

83

Figure B.3: The GUI for the May 18th Former -board after running MCTS for 1 second.
MCTS suggests a group to be removed, and displays the maximum number of moves
remaining from the current state if that move is selected first.

Figure B.4: The GUI for the May 18th Former -board after choosing the initial action
recommended by MCTS in Figure B.3. The suggestion is updated, along with the maxi-
mum number of remaining moves according to the solver.

84

85

	Abstract
	Sammendrag
	Preface
	Introduction
	Problem Description
	Main Contributions
	Contributions to Sustainability

	Structure of Thesis

	The Former Game
	Rules and Glossary
	Game Exploration
	Gameplay Examples
	Descriptive Statistics
	Important Properties

	Mathematical Problem Formulation
	Markov Decision Processes
	Formal Problem Statement

	Machine Learning Background
	Neural Networks
	Building Blocks
	Training a Neural Network

	Supervised Learning
	Data
	Objective Functions
	Evaluation Metrics
	Hyperparameter Tuning with Bayesian Optimization

	Proximal Policy Optimization
	Dynamic Programming
	PPO as an Approximate Policy Iteration

	Search Techniques
	Former as a Tree Search Problem
	Monte Carlo Tree Search
	Beam Search

	Methodology
	Code Implementation and Daily Board Acquisition
	Self-made Heuristics
	Supervised Learning
	Data Generation
	Neural Network Architectures
	Hyperparameter Tuning
	Training and Validation
	Evaluation

	Proximal Policy Optimization
	Actor-critic Network Architecture
	Hyperparameters and Reward Shaping
	Training
	Evaluation

	Search Techniques
	MCTS Implementation Details
	Beam Search Implementation Details
	Evaluation

	Results and Discussion
	Self-made Heuristics
	Supervised Learning
	Hyperparameter Tuning
	Training and Validation
	Evaluation

	Proximal Policy Optimization
	Training
	Evaluation

	Search Techniques
	Performance on Random Boards
	Performance on Daily NRK Boards

	Conclusions
	Concluding Remarks
	Future Work

	References
	Distribution of Shapes in the Daily Boards
	Hypothesis Test on the Uniform Assumption
	Hypothesis Test on the Noncorrelation Assumption

	GitHub Repository
	GitHub Repository Link
	Play Former with Solver Recommendations

