SPATIO-TEMPORAL STATISTICS AND DATA ANALYTICS FOR EARTH SCIENCE APPLICATIONS

> SUSAN C. ANYOSA JO EIDSVIK

Objectives

Bring together the best from modern data science, machine learning and statistical models/methods, for spatial and spatio-temporal Earth-science applications.

Motivation: The challenges to solve

How can we use our skills to solve these challenges?

Which applications?

- Prediction of CO₂ leakage.
- Classification of sea-surface temperature (SST) images.

5

Plan the design of new paths for sample expedition.

Classification of SST images

Data sources in oceanographic applications

Ocean model results in space-time

• West of Trondheim fjord:

Classification of satellite data from temperature trends and variability (Monterey Bay, California)

Approach: Gaussian processes and model-based recursive partitioning

Fit a GP in each node.

Design of new paths for sample expedition

Prediction error

$$PE = 1 - \max_{k} P(x = k)$$
$$PE(y) = \int [1 - \max_{k} P(x = k|y)]p(y)dy$$

What data sources are really helpful?

CO₂ leakage prediction

Monitoring CO₂ injection at Smeaheia

- Problem: CO₂ can leak after the injection.
- Challenge: Difficult to monitor due to seismic signatures.

Scenarios

1: Sealing 2: Leaking Depth

Approach:

- Consider 10 times of monitoring.
- For each time, simulate M images (40x70) from each scenario.
- Train in M-K images and predict the scenario in the K images of the test set.

> The probability of each class, conditioned on the data:

$$P(class = j \mid \boldsymbol{y}) = \frac{p(\boldsymbol{y} \mid j)P(class = j)}{p(\boldsymbol{y})}$$

Prior probabilities:
$$P(class = 1) = P(class = 2) = 0.5$$

▶ The likelihood is approximated by a GP for each class j=1,2 with:

$$\hat{\boldsymbol{\mu}}^{j} = (\hat{\mu}_{1}^{j}, \dots, \hat{\mu}_{2800}^{j})^{T}$$
$$\hat{\boldsymbol{\Sigma}}^{j} = \begin{bmatrix} \hat{\sigma}_{1}^{j} & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & \hat{\sigma}_{2800}^{j} \end{bmatrix} \hat{R} \begin{bmatrix} \hat{\sigma}_{1}^{j} & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & \hat{\sigma}_{2800}^{j} \end{bmatrix}$$

	True		
		Seal	Leak
Predicted	Seal	True seal	False seal
	Leak	False leak	True leak

Results

- We computed a confusion matrix for each monitoring time.
- We obtained the probabilities of false leak and false seal for each monitoring time.

PhD training

- Fall 2018: MA8704 Probability Theory and Asymptotic Techniques
- Spring 2019: MA8701 General Statistical Methods and TDT4173 - Machine Learning and Case-Based Reasoning
- Fall 2019: MA8001 Methods for spatial and spatio-temporal data and value of information analysis

Time Schedule

