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Recall from last time

* Stochastic variable, X

— X represents an unknown quantity
— p(x) describes our knowledge about X

* The effect of conditioning

— two stochastic variables, p(x1, x2)
- p(x1) = ffcoo p(x1, x2)dxa describes our knowledge about x;
— after we have observed a value for x;,

p(X1’ X2)

Pabe) = Zot0)

describes our updated knowledge about x;

* Three strategies to specify p(x1, x2)
— specify a formula for p(x1, x2) directly (often Gaussian)
— conditional probability, p(x1,x2) = p(x1)p(x2|x1)
— hierarchical model, x1, x2|0 ~ p(x|#) indep., and 6 ~ p(0)

* Use graphical model to visualise how we specified p(xi, x2)



Plan for today

*

Interpretation of a distribution, p(x)

>+

Modelling of noisy observations

*

Independence and conditional independence

* Use of conditional independence for modelling of n variables

— Markov chain, CO, leakage example
— a larger network example

Hierarchical models

%

— the effect of conditioning

How to look at n-dimensional distributions
— what quantities are we interested in?
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Interpretation of p(x)

* Discrete stochastic variable
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* Discrete stochastic variable
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* Interpretation: p(x) = P(X

— for example: p(5) = P(X



Interpretation of p(x)

* Discrete stochastic variable

2 4 6 8 10 X
* Interpretation: p(x) = P(X = x)
— for example: p(5) = P(X = 5)

* With two stochastic variables

p(x1,x2) = P(X1 = x1, X2 = x2)



Interpretation of p(x)

* Continuous stochastic variable
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* Interpretation:

Pla< X <b)= /bp(x)dx
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Interpretation of p(x)

* Continuous stochastic variable
p(x)q
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* Interpretation:

b
P(a< X <b) :/ p(x)dx
— for example: ?

1.86
P(0.75 < X < 1.86) = / p(x)dx
0.45

— two continuous stochastic variables

P((X1,X2) € A) = // p(x1, x2)dx1dxz
A
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Recall: Hierarchical model example

* Assume: xi, x2|0 ~ p(x|0) independently, 6 ~ p(0)
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* Simplistic example:

— 6 € {0,1}: source rock has produced hydrocarbons
x; € {0, 1}: hydrocarbons present in prospect 1
— x2 € {0,1}: hydrocarbons present in prospect 2
assume probabilities: p(f = 1) =0.3

pe = 100 = 0) = 0, ple = 10 = 1) = 06

* We found and compared: p(x; = 1) and p(x; = 1|x2 = 0)



Recall: Hierarchical model example

* Assume: xi, x2|0 ~ p(x|0) independently, 6 ~ p(0)
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* Simplistic example:
— 6 € {0,1}: source rock has produced hydrocarbons
— x1 € {0,1}: hydrocarbons present in prospect 1
— x2 € {0,1}: hydrocarbons present in prospect 2
— assume probabilities: p(§ =1) = 0.3
p(x1=16=0)=0, p(xa=1/0=1)=0.6
p(xx=10=0)=0, p(xa =10 =1)=0.6

* We found and compared: p(x; = 1) and p(x; = 1|x2 = 0)

* Now assume we observe x> with noise
— how can we model this?



Modelling of observation noise

* New stochastic variable for observation: y, € {0,1,2}
— assume

p(y2=0xx =0)=0.6  p(y2 =0lx, =1) =0.1
ply2=1x2=0)=03  p(ya=1xx =1)=0.2
p(y2 =2|x =0)=0.1 p(y2 =2/ =1)=07

* New graphical model: @
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p(0, x1,x2, y2) = p(0)p(x1|0) p(x2]0) p(y2|x2)

% Joint distribution:



Modelling of observation noise

* New stochastic variable for observation: y, € {0,1,2}
— assume

p(y2=0xx =0)=0.6  p(y2 =0lx, =1) =0.1
ply2=1x2=0)=03  p(ya=1xx =1)=0.2
p(y2 =2|x =0)=0.1 p(y2 =2/ =1)=07

* New graphical model: @

&) )
&)

p(0, x1,x2, y2) = p(0)p(x1|0) p(x2]0) p(y2|x2)

% Joint distribution:

* Probabilities of interest:
p(x1 =1ly2=0), p(x2=1ly2=0)
pix1 =1y2=1), pl =1y, =1)
pixa =1ly2 =2), ple =1y, =2)



Modelling of observation noise (6)

* “Detailed” calculation of one probability @ @

:p(Xlz]-ayQ:O) @
p(y2 = 0)
Z;:O Z)lqzo Z>1<2:0 p(@, X1,X2,y2 = O)
~0.054

=22 01
oEp = 0-1059

p(x1 = 1ly» = 0)




Modelling of observation noise (6)

* “Detailed” calculation of one probability @ @

_plxi=1,y2=0) (2)
 p(2=0)

B > 60 Dorao P(0,x1 = 1,32,y = 0)
Yo Ym0 Yoo P(0: X1, 50, y2 = 0)
_0.054

—— =0.1059
0.51

p(x1 = 1ly» = 0)

* Resulting probabilities:
p(x1 = 1]y = 0) = 0.1059 p(x, = 1|y» = 0) = 0.0353
p(x1 = 1ly2 =1) =0.1532 p(x2 = 1]y, = 1) = 0.1277
p(x1 = 1|y =2) =0.3981 p(x2 = 1|y» = 2) = 0.6058

p(x1 =1)=0.18 p(x =1)=0.18
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Independence and conditional independence

* Independence: x; and x, are independent if

p(xi|x2) = p(x1)
— from this it follows

p(X17X2)

o7 =pla) e plasx) = plx) - plx)

plxalxe) =

— in turn this implies

- P(X17X2) o P(X1) : P(Xz) — b(x
p(xalx1) = o) ) p(x2)

* Graphical model showing that x; and x» are independent:

& ©@



Independence and conditional independence

* Conditional independence: x; and x» are conditionally
independent given @ if

p(xi|x2, 0) = p(x1|0)

— from this it follows

p(x1,x2|0) = p(x1|0) - p(x2|6)
— note that x; and x are then not independent!

* Graphical model showing that x; and x, are conditionally
independent given 6

&) )



How conditional independence helps specifying a model
* Simplistic example:
— 6 € {0,1}: source rock has produced hydrocarbons
— x1 € {0,1}: hydrocarbons present in prospect 1
— x2 € {0,1}: hydrocarbons present in prospect 2
— y2 € {0,1,2}: noisy observation of x;
* Want a model for 0, x1, x2 and y», i.e. p(0,x1, X2, y2)
* Always true:

P(97X17X2,)/2) = P(e) : P(Xl\g) : p(X2’07X1) : P(Y2|9,X17X2)
= p(0) - p(x1]0) - p(y210, x1) - p(x2|0, x1, y2)

= p(y2) - p(xaly2) - p(x1ly2, x2) - p(8]y2, x2, x1)
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How conditional independence helps specifying a model
* Simplistic example:
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p(x2|0,x1) = p(x2|6) @

p(y210, x1, x2) = p(y2|x2)
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Conditional independence example: CO, leakage

* Inject CO; in layered reservoir X5
* x; € {0,1}: injected CO, present in layer i
X4
* Modelling 3
p(X17X27X37X47X5) x5
= p(x1)p(x2|x1)p(x3|x2) p(xa|x3) p(x5|xa)
where X_l
p(xi=1)=pm inject CO,

p(xi =1|x;i-1 =0) =0, p(xi=1|xi-1=1)=p;



Conditional independence example: CO, leakage

* Inject CO5 in layered reservoir @ X5
* x; € {0,1}: injected CO, present in layer i &
X4
* Modelling @
X3
p(X17X27X37X4aX5) @ X0
= p(x1)p(x2|x1)p(x3|x2) p(xa|x3) p(x5|xa)
where @ X
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Conditional independence example: CO, leakage

* Inject CO; in layered reservoir
* x; € {0,1}: injected CO; present in layer i
* Modelling
p(X17X27X37X4aX5)
= p(x1)p(x2|x1)p(x3|x2) p(xa|x3) P(x5]xa)
where

pxi=1)=pm

Da®,
D

G
D)

X5
X4
X3
X2
X1

inject COy

p(xi =1|x;i-1 =0) =0, p(xi=1|xi-1=1)=p;

* Observation related to each layer, y;

p(yilxi)



Conditional independence example: CO, leakage

* Inject CO5 in layered reservoir @ @ X5
* x; € {0,1}: injected CO; present in layer i @ @ —_—
X4

* Modelling @ @ 3
p(X17X27X37X4aX5) @ @ X—2

= p(x1)p(x2|x1)p(x3|x2) p(xa|x3) p(x5 |x4)

where @ @ X1

p(xi=1)=pm inject CO,
p(xi =1|x;i-1 =0) =0, p(xi=1|xi-1=1)=p;
* Observation related to each layer, y;
p(yilxi)
* Distributions of interest:

P(Xi|)/1,)/2a }’3,}/4,)/5), = 1a 27 37 4> 5



A larger graphical model example

* Reference: Martinelli, G., Eidsvik, J. and Hauge, R. (2013).
Dynamic decision making for graphical models applied to oil
exploration, European Journal of Operational Research.

* Three types of nodes: Areas which may have produced HC
(K), macro-regions able to store HC (P), prospect nodes

* A stochastic variable for each node, x, € {dry, oil, gas}



A larger graphical model example

* Joint distribution

p(x) = H P(Xk’Xpa(k))
k

Number of possible values of x: 3%? ~ 10%°

* o

Cost of drilling, profit if finding oil /gas
In which prospects should we drill exploration wells?
— sequential decisions
— finding oil/gas gives profit
— observations are important for later decision
— assume we want to maximize profit
— include discounting

%

* Maximisation problem

r{+6s€rga\§i}{§jp(xs = lpx =) (rh+..) 0}] 0

I=1

3

max{ > p(x; = j)




The effect of conditioing

* The effect of drilling in prospect 14 (top) and 10 (bottom)
— observe dry (left) or oil (right)

* Colours indicate p(xx = 0il|Xeps) — p(xk = oil)
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Hierarchical models and the effect of conditioning

* x = (x1,x2,...,Xn): spatial variable

X1 X2 X3 X4 X5 Xo X7 Xg X9 X10X11X12X13X14X15X16X17 X18X19 X20

* Assume x to be Gaussian

* Elxi] =

* Var[xj] = o2
* Corr[x;, x;] = p(|i — j|)

Assume =0, 02 =1 and p(h) = exp{—(h/iO)1'5}

%
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Hierarchical models and the effect of conditioning

* x = (x1,x2,...,%n): spatial variable

X1 X2 X3 Xa X5 Xe X7 Xg X9 X10X11X12X13X14X15X16X17 X18 X19X20

* Assume x to be Gaussian
* E[xi] = p
* Var[x] = o2 £

* Corrlx;, xj] = p([7 = JI)

* Assume 1 =0, 02 = 1 and p(h) = exp{ h/10 15}
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Hierarchical models and the effect of conditioning

* x = (x1,x2,...,%n): spatial variable

X1 X2 X3 Xa X5 Xe X7 Xg X9 X10X11X12X13X14X15X16X17 X18 X19X20

* Assume x to be Gaussian

* E[xi] = p
* Var[x] = o2

* Corrlx;, xj] = p([7 = JI)

* Assume 1 =0, 02 = 1 and p(h) = exp{—(h/10)*5}

O
N
"V‘VI’A"‘\ NS
7 AN A

— = o TONAAXT
= SR

A




Graphical models and the effect of conditioning

* x = (x1,X2,...,Xp): spatial variable

X1 X2 X3 X4 X5 Xg X7 Xg X9 X10X11X12X13X14X15X16X17 X18X19X20

* Assume x to be Gaussian

* E[xi] = p

* Var[x;] = o2
* Corrlxi, xj] = p([7 = JI)

Assume 1 =0, 02 =1 and p(h) = exp{—(h/10)15}

%
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Graphical models and the effect of conditioning
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Graphical models and the effect of conditioning

* x = (x1,X2,...,Xp): spatial variable

X1 X2 X3 X4 X5 Xg X7 Xg X9 X10X11X12X13X14X15X16X17 X18X19X20

Assume x to be Gaussian
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* Assume p1 =0, 02 = 1 and p(h) = exp{—(h/i0)1'5}
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Graphical models and the effect of conditioning
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Graphical models and the effect of conditioning

* x = (x1,x2,...

b S S

* ot

,Xn): spatial variable

X1 X2 X3 X4 X5 Xg X7 Xg X9 X10X11X12X13X14X15X16X17 X18X19X20

Assume x to be Gaussian
E[xi] = p
Var[x;] = o2

Corrlx;, xj] = p(Ii = JI)

Assume p ~ N(0,52), 02 =1 and p(h) = exp{—(h/10)'*}
Assume observed: xg = 2.8, x14 = 2.4, x13 = 2.5, xo0 = 2.7
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Graphical models and the effect of conditioning

* x = (x1,X2,...,Xp): spatial variable

X1 X2 X3 X4 X5 Xg X7 Xg X9 X10X11X12X13X14X15X16X17 X18X19X20

Assume x to be Gaussian
E[xi] = p :
Var[x;] = o

Corrlx;, xj] = p(Ii = JI)

b R I S o

* Assume p ~ N(0,52), 62 =1 and p(h) = exp{—(h/10)**}
* Assume observed: xg = 2.8, x14 = 2.4, x18 = 2.5, x00 = 2.7
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Use of conditional independence for modelling of n variables

— Markov chain, CO, leakage example
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— the effect of conditioning

* How to look at n-dimensional distributions
— what quantities are we interested in?



How to look at n-dimensional distributions

* How to look at 1-dimensional distributions?
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How to look at n-dimensional distributions

* How to look at 2-dimensional distributions?




What quantities are we interested in?

* Assume stochastic variables, x1,...,Xn, V1,..., Vm
— we have a formula for p(x1,..., X, Y15+ Ym)
— we have observed y1,...,ym
— distribution of interest

p(X17"°7Xn7y17""lel)
p(y1,.-.,}/m)

P(X17~~,Xn|)/1»~~~a}’m) -

where

oo o
p(yla"'>ym):/ / p(Xla'"7Xn7}/17"'aym)dxl"'

— 00 —0o0

dx,



What quantities are we interested in?

* Assume stochastic variables, x1,...,Xn, V1,..., Vm
— we have a formula for p(x1,..., X, Y15+ Ym)
— we have observed y1,...,ym

— distribution of interest

p(X17"°7Xn7y17""lel)
p(y1,.-.,}/m)

p(X1y -y XnlY1y ooy Ym) =
where

oo o0
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* We may be interested in
—each x;;i=1,...,n, ie.

oo oo
P(Xi|}/17~--a)’m):/ / p(le"'aXn|y15'~'a.ym)dX1"'dXi—ldXH—l"'an
—00 —o0

— each pair (xi,xj);i,j =1,...,n, i.e. p(xi,Xj|y1,- -1 Ym)
— some function of x, ..., x,

z=g(x1,-,Xn)



What quantities are we interested in?

* If we cannot evaluate the integrals, we can do Monte Carlo
sampling

* Assume we can do Monte Carlo sampling from

P(X1y ey Xny Y1y e ey Ym)
p(y17' . 'aym)

p(Xla"- 7Xn|y17"' aym) =
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What quantities are we interested in?

* If we cannot evaluate the integrals, we can do Monte Carlo
sampling

* Assume we can do Monte Carlo sampling from
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What quantities are we interested in?

* If we cannot evaluate the integrals, we can do Monte Carlo
sampling

* Assume we can do Monte Carlo sampling from

P(X1y ey Xny Y1y e ey Ym)
p()/1,- . 'aym)

p(Xla"- 7Xn|y17"' aym) =

* I (X1, .0y xn) ~ p(X1, ..oy Xn|Y1, - -+, Ym) We have
= xi ~ p(Xily1, .- Ym)
= (%, %) ~ P(Xi, X[y, - - ym)
- z=g(x1,...,%xn) ~ p(z|y1, .-\ Ym)



Gaussian example revisited

* x = (x1,X2,...,Xp): spatial variable

X1 X2 X3 X4 X5 Xg X7 Xg X9 X10X11X12X13X14X15X16X17 X18X19X20

Assume x to be Gaussian
E[xi] = p :
Var[x;] = o

Corrlx;, xj] = p(Ii = JI)

b S S

* Assume p ~ N(0,52), 62 =1 and p(h) = exp{—(h/10)**}
* Assume observed: xg = 2.8, x14 = 2.4, x18 = 2.5, x00 = 2.7




Marginal distributions

* Ten realisations

* Marginal distributions for xo0, xo5 and xgo

p(x20|xs, 14, X18, X22)  p(Xx25|X8, X14, X18, X22)  P(X60|X8, X14, X18, X22)
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Bivariate distributions

* Ten realisations

position

* Some bivariate distributions
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A non-linear function of xq, ..., x,

* Three realisations

o =Zo “ao so s0 100
position

* Let z = g(x1,...,xn) be the length of the longest continuous
interval where x; > 3.25

* Distribution of z:



A non-linear function of xq, ..., x,
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* Distribution of z: 3




Plan for next time

* Part I: Introduction, stochastic variables and the effect of
conditioning

* Part II: Modelling of dependence, conditional independence
* Part Ill: Bayesian inversion, prior and posterior distribution

* Part IV: Spatial model for categorical variables, Markov chain
Monte Carlo

* Part V: Dynamic state space models, Kalman and ensemble
Kalman filters



