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Introduction

Topics

I Bayesian inversion (prior, likelihood and posterior)

I Gaussian process regression and Kriging

I Linear Bayesian inversion
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Conditioning model to data : Bayesian inversion

Model and inversion

Model for x and y is
p(x , y) = p(x)p(y |x)

For the analysis, the main interest is in the conditional p(x |y).
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Conditioning model to data : Bayesian inversion

Bayesian inversion

Model for x and y is
p(x , y) = p(x)p(y |x)

p(x) from a priori knowledge, p(y |x) from data acquisition. Bayes’ rule
gives the posterior:

p(x |y) =
p(x)p(y |x)

p(y)

Inverse problems are often considered difficult, and requires
computational approximations, except for small dimensions or linear
Gaussian models
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Conditioning model to data : Bayesian inversion

Bayesian inversion and parameters

Model for θ, x and y is

p(θ, x , y) = p(θ)p(x |θ)p(y |x)

(Assuming conditional independence.)
Bayes’ rule:

p(θ, x |y) =
p(θ)p(x |θ)p(y |x)

p(y)
.
Parameter θ can be specified from auxiliary data sources.



Short Course on Statistics and Uncertainty Part III

Conditioning model to data : Bayesian inversion

Example of this setting: Positioning from traveltime data

Localization problem from traveltime data.
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Conditioning model to data : Bayesian inversion

2D earth - traveltime from source to receiver
Traveltime measurements of event
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Based on the traveltime data : ’Where is the source?’
There are many similar settings in Earth sciences:
Seismic data (Vertical Seismic Profiling), Sonar / acoustic data (range
only data).
Earthquakes, hazards, explosions, etc. similar, with a reference (time
difference).
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Conditioning model to data : Bayesian inversion

Bayesian approach to source localization

I Prior model for source location in the subsurface (or sea).

I Likelihood model for the traveltime model, with noise characteristics.

I Bayes’ rule combines these to give the posterior model.
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Conditioning model to data : Bayesian inversion

Notation

I Source location x = (x1, x2) (east, depth).
Prior probability density function p(x).

I Traveltime data y = (y1, . . . , ym). (m receivers)
Likelihood model is defined via a conditional probability density
function p(y |x).

I The solution to the inverse problem is the posterior probability
density function:

Bayes’ rule:

p(x |y) =
p(x)p(y |x)

p(y)
∝ p(x)p(y |x)
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Conditioning model to data : Bayesian inversion

Prior model

Prior density
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Gaussian distribution for x = (x1, x2).
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Conditioning model to data : Bayesian inversion

Likelihood model

Traveltime measurements of event
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Traveltime measurements j = 1, . . . ,m are defined by

yj =
√

(s1,j − x1)2 + (s2,j − x2)2/v + εj , εj ∼ N(0, r2)

Receiver(s) at surface (s1,j , s2,j), j = 1, . . . ,m.
Assume conditionally independent errors between sensors.
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Conditioning model to data : Bayesian inversion

Posterior model (1 sensor, accurate measurement)

Posterior density, (data uncertainty 0.002 msec)
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Conditioning model to data : Bayesian inversion

Posterior model (1 sensor, accurate measurement)

Posterior density, (data uncertainty 0.002 msec)
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10 -3 Prior density
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Conditioning model to data : Bayesian inversion

Posterior model (1 sensor, inaccurate measurement)

Posterior density, (data uncertainty 0.005 msec)
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10 -4 Prior density
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Conditioning model to data : Bayesian inversion

Posterior model (2 sensors, poor design)

Posterior density, (data uncertainty 0.002 msec)
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10 -3 Posterior density, (data uncertainty 0.002 msec)
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Conditioning model to data : Bayesian inversion

Posterior model (2 sensors, good design)

Posterior density, (data uncertainty 0.002 msec)
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10 -3 Posterior density, (data uncertainty 0.002 msec)
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Conditioning model to data : Bayesian inversion

Posterior model (5 sensors)

Posterior density, (data uncertainty 0.002 msec)
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Posterior density, (data uncertainty 0.002 msec)
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Conditioning model to data : Bayesian inversion

Bayesian inversion

The source location problem is a classic example of an inverse problem.
The forward model (time) is easy to calculate. But the inverse is difficult
in real-world problem which are often of much higher dimensions than 2
as we have here with position in (east, depth), and more non-linear.
A gerenal approach to Bayesian inversion:

I Prior model for (spatial) variables of interest.
Usually a Gaussian model, bringing in smoothness and regularization.

I Likelihood model for the link to data and the acquisition assumption.
Focus of today will be a linear Gaussian likelihood model.

I Bayes’ rule gives the posterior model.
With the assumption of linearity and Gaussian densities, this
posterior will also be Gaussian.
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Gaussian random field

Gaussian random field model

x(s) = µ(s) + z(s), s ∈ D ∈ Rd (Today R2 or R3.)

I µ(s) defines the spatial trend. Often depends on covariates, in a
regression model: µ(s) = h(s)β.

I z(s) is a zero-mean structured (spatially correlated) Gaussian
process.

I Close sites are very correlated. Sites far away are less correlated.
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Gaussian random field

Trend and realization
Specified mean
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Realization of Gaussian random field
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Gaussian random field

Lower trend

Realization of Gaussian random field
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Gaussian random field

Covariance functions and variograms

These valid choices of models give a positive definite covariance matrix
for any discretization of the domain.
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Gaussian random field

Larger variance and correlation

Realization of Gaussian random field
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Gaussian random field

More smoothness

Realization of Gaussian random field
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Gaussian random field

Monte Carlo sampling of a Gaussian process

Simulation on a finite number of grid cells.
Prior mean µ.
Cholesky matrix LL′ = Σ. Standard deviations: σi =

√
Σ(i , i), for all i .

I Specify parameters (mean and covariance).

I Set a grid of n locations (discretize the spatial domain).

I Generate independent standard normal variables: z=randn(n,1)

I Use the Cholesky matrix to get correlated variables: v=L*z

I Add the mean x=mu+v
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Conditional model

Data and Gaussian posterior model

Prior model:
x ∼ N(µ,Σ)

We collect data according to a design.
This defines a matrix F (potentially picking observation sites) and
measurement noise (covariance matrix R).

y |x ∼ N(Fx ,R)

With Gaussian assumptions.

x |y ∼ N(µ + ΣF ′(FΣF ′ + R)−1(y − Fµ),Σ−ΣF ′(FΣF ′ + R)−1FΣ)
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Conditional model

Interpretation of conditional distribution

With just univariate x and a single data y , (F = 1):

x |y ∼ N(µ+
σ2

σ2 + r2
(y − µ), σ2(1− σ2

σ2 + r2
))

I Conditional mean is a weighting of prior mean and data:
r2

σ2+r2µ+ σ2

σ2+r2 y .

I The weights depend on the prior uncertainty σ2 and the
measurement uncertainty r2.

I The conditional variance stays near σ2 if r2 is large. The
conditioning has little effect.

I The conditional variance goes to 0 when r2 is very small.
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Conditional model

Properties of conditional distribution

x |y ∼ N(µ + ΣF ′(FΣF ′ + R)−1(y − Fµ),Σ−ΣF ′(FΣF ′ + R)−1FΣ)

I In geostatistics and spatial interpolation this is sometimes called
Kriging.

I Conditional mean is linear in the data.

I Conditioning to data changes the prediction at un-observed sites.
And more so for large correlation.

I Conditional variance is reduced from the initial, the reduction
depends on the design and the measurement accuracy.

I Conditional variance does not depend on the data. It can be
computed before the data acquisition.

I Conditional standard deviations are square root of diagonal elements
of covariance matrix.
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Conditional model

Example : Data designs (F )
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Conditional model

Example: Predictions and prediction standard deviation
Prediction is the conditional mean. The prediction error is here extracted
from the conditional covariance matrix : standard deviations are the
square root of the diagonal.
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Mining example

Case : mining data

I Data at 1871 locations where oxide measurements are gathered.

I Covariate from prior geological understanding
h(s) = [1,min.index(s)]. Regression model (trend) fit from available
data.

I Spatial covariance is a Matern-type. Information will propagate from
data locations.

I Two data types: some data made in the lab (very accurate, r2 is
small), others on-location with a handheld instrument (inaccurate,
r2 is large). The formulation allows them to be weighted differently
and in a consistent manner.
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Mining example

Grade prediction from boreholes
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Mining example

Variogram



Short Course on Statistics and Uncertainty Part III

Mining example

Predictions and prediction standard deviations
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Linear Bayesian inversion

Linear forward model

x ∼ N(µ,Σ)

Linear combinations of data can also be captured in the matrix F .
Differences, weighted averages, convolutions. This is common in e.g.
seismic data or in medical tomography.

y |x ∼ N(Fx ,R)

The posterior expression still holds:

x |y ∼ N(µ + ΣF ′(FΣF ′ + R)−1(y − Fµ),Σ−ΣF ′(FΣF ′ + R)−1FΣ)
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Seismic example

Seismic Amplitude-versus-angle inversion

Processed seismic Amplitude versus angle data can be considered to be a
linear operator of the elastic properties. Then: F = WAD.

I D is a difference operator. Seismic waves are reflected when
properties in the subsurface change.

I A consists of physical weights defined by Aki-Richards coefficients
(depending on angles of incidence and background Vp/Vs ratio.

I W defines a wavelet convolution operator mimicking the seismic
source signature.
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Seismic example

Seismic Data

’Raw’ seismic data is highly non-linear. Processing steps are often done,
and in one domain the seismic amplitude versus angle data are close to
linearly related to the elastic properties (Vp, Vs and ρ in the subsurface).
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Seismic example

Seismic Amplitude versus Angle Data
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Seismic example

Prior

x ∼ N(µ,Σ)

I µ is separate for elastic properties logVp, logVs and log ρ. Often
with a depth trend for each.

I Σ = Σ0 ⊗ S has a 3× 3 covariance matrix between the elastic
properties and a N ×N spatial correlation matrix between all N sites
(n = 3N).

Buland and Omre (2003), Buland et al. (2003).
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Seismic example

Linear Bayesian inversion : mean
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Seismic example

Linear Bayesian inversion : sample

Fast inversion, with uncertainty quantification.
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Seismic example

Linear Bayesian inversion : slice mean
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Next weeks

Non-linear approaches

I Markov chain Monte Carlo sampling.

I Ensemble Kalman filtering.
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