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|—Introduction

Topics

» Sequential methods for data conditioning
» State space models
» Bayesian filtering

» Kalman filter, ensemble Kalman filter
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Conditioning model to data

Model and inversion

MODEL VIEW INVERSE VIEW

Marginal
likelihood model

Likelihood model

Bayes’ rule

Prior model
Posterior model

Model for x and y is
p(x,y) = p(x)p(y|x)

For the analysis, the main interest is in the conditional p(x|y).
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Conditioning model to data

Bayes rule

p(x) from a priori knowledge, p(y|x) from data acquisition. Bayes' rule
gives the posterior:

_ p(x)p(y|x)
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Conditioning model to data

Inversion of multiple data

MODEL VIEW

Likelihood
model

Prior model

INVERSE VIEW

Bayes’ rule

Posterior model
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LSe uential estimation
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Inversion of multiple data

Model for x, and y; and y, is

P(x,¥1,¥2) = p(x)p(y1, ¥2|x)

p(x) from a priori knowledge, p(y;,y,|x) from data acquisition
Bayes' rule gives the posterior:

p(Xlys.ys) = P(x)p(¥1, ¥2|x)

p(y1,¥2) o p(x)p(y1, ¥2|X)
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|—Se uential estimation
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Conditional independence

P(y1. y21x) = p(y1|x)p(y,|x)
Bayes' rule gives the posterior:

— p(x)p(y1]x)p(y2|x)

p(y1,¥2)

p(x|y1,¥2)

o p(x)p(y1|x)p(y2|x)
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|—Sequem.ial estimation

Inversion of multiple data

MODEL VIEW

Likelihood
model

Prior model

INVERSE VIEW

Bayes’ rule

Posterior model
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Sequential Bayesian inversion

P(x|y1)p(y2|x)
pPX|Y1,¥2) = X px|y1)plya|Xx
(xly1,y2) 2(7alys) (xly1)p(yalx)

Generalization, t =1,..., T data sources:
p(x|y17

7yt) X p(X|y1,

Ye-1)P(yelx)
This is often called sequential updating or data assimilation.
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LSequentiaI estimation

Approaches for sequential Bayesian inversion

» Monte Carlo samples from p(x|yq,...,¥;_1) are updated or
re-weighted to get samples from p(x|yq,...,¥,)-
» Closed form solution for

PX1y1s - 2¥2) 5 p(xIY 1. Yo 1)p(y,lx). Gaussian-linear
situation, or a discrete set of classes for x.
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LSequentiaI estimation

Example of sequential assimilation of multiple data

» Seismic experiment with 50 receiver depths in well and 1 source on
surface (known locations).

» Use traveltime data to predict slowness in the subsurface.

Source-receiver geometry

Depth [m]
Traveltime (msec)

15 20 25 30 3 40 0 5 10 15 20 25 30 35 40 45 50
Lateral distance [m Receiver index
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[ Sequential estimation

Example with traveltime data

» Traveltime =

Distance _
Velocity

P Assimilate traveltime data yi, ..

Distance - Slowness.

., ¥s0 sequentially.

» Predict distribution for slowness. Initial slowness ensembles from
-1 X100).

prior model p(x), x = (xi, ..

Depth [m]

10

Source-receiver geometry

15 20 25
Lateral distance [m]

30

depth index

slowness
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L Sequential estimation

Example : Inversion after 10, 30 and 50 steps

Ensemble-based solution
B\ )

Ensemble-based solution
TN

depth index
depth index
depth index

o5
slowness

DA
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State space models and filtering

State space models

» Variable x; can change with index t. Index t is often time, but could
be along a road, along a well, etc.

» \We have a model for how x; change with time (often assuming
dependence only on the previous time).

» We have a model for how data y, relates to x; (often assuming
conditional independence in the data).
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State space models and filtering
:

A Common Type of State space model

Conditional independence in process (state) model:

p(Xe|Xe1,¥15 ¥ 1) = p(Xe[xe-1)
Conditional independence in measurement model:

PWYely1, Ye 1, Xe,- -, x1) = p(y|xt)
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State space models and filtering

Filtering and Prediction

Filtering goal:

P(xt|Y17
Prediction goal s > t:

e Yy)

p(Xsly1,--ye)
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[ Filtering approach

Filter

Filtering
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[ Filtering approach

One step prediction

Predict

N
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[ Filtering approach

Filter

Filtering

—




Short Course on Statistics and Uncertainty Part V.
[ Filtering approach

Predict

[ Predict
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[ Filtering approach

Filter

Filtering




Short Course on Statistics and Uncertainty Part V.
[ Filtering approach

Predict

G
NG
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[ Filtering approach

Predict

Filtering
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LBayesian filtering

Prediction, filtering and smoothing

p(xely1 o Yeo1) = / P(%etlyns - - Ye1)P(XelXe1)dxe

p(xtly1s -5 ¥e1)P(Yelxe)
pYely:—1,- - ¥1)

p(Xtlyq,-y:) =
p(xely1,--y71),  p(X|y1 - y7)

Exact closed-form solutions:
» Discrete state space models (Markov chain)
» Gaussian linear models (Kalman filter, smoother)

Not so easy for other models. Need Monte Carlo methods.
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LBayesian filtering

Special case: Linear Gaussian model assumptions

Conditional independence in process (state) model:

Xt|Xt—1 ~ N(tht—17 Qt)

Simplest setting (static model): x; = x;_1

Conditional independence in measurement model:

Yelxe ~ N(Gext, Ry)
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LKaIman filtering

Kalman filter

Elegant form for building the Gaussian distribution for prediction and
filtering/analysis/assimilation:

p(xelyr, o Ye1) = / P(XecrlY1s - Yeo1)P(XelXe1)dXe1

Xely1, o Yeo1 ~ N(p’t|t—17:t|t—1)

Xt|Yqs Y~ N(:“’t]t’ zt|t)
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LKaIman filtering

Kalman filter : Prediction step

With linear expectation and Gaussian additive noise, the models remain
Gaussian. Need mean and covariance.
0 ~ N(07 Qt)

Hije—1 = E(Fexe—1+ 8¢ly,, -

Yeo1) = Ftl"t—llt—l

Tie1=Var(Fexe1 4 8ely1, .,y 1) = FeXe 11 F + Q:
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LKaIman filtering

Kalman filter update : Joint Gaussian

p(xt,¥¢|¥1,---Ys_1) is joint Gaussian

A

-
Xt Htje—1 ) ( ) IPEEY %1G,
sy Yi 1~ N ,
( Y >|y1 Yeo1 [( Gt/J't\t—l G:Xy 1 Gtzt|t—1GtT+Rt )

[Xelye, ¥eo1s--o 1] ~ N(Nt|t—1+Kt(yt_Gtut|t—1)’ X1-KiGe Xy 1)

K:= Zt|t—1GtT[Gtzt|t—1GtT +R!
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I—Kalman filtering

Example from Target Tracking

» A submarine measures the bearing to a target (frigate).
» From bearings-only data, it attempts to track the frigate.

Map view . Data: measured anti-clockwise from straight east
P T T T T T T
x
5000 - Upper confidence bound w65 1
4000 |-
P wh ]
- Estimate o
T 3000 >
2 <
°Frigale 455] ° 4
2000 [
* Lower confidence bound
1000 | sl |
o- o Submarine
. . . . . . . 5 . . . . . . . . .
o 1000 2000 3000 4000 5000 6000 o 0.2 0.4 0.6 0.8 1 12 14 16 18 2
East Time
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LKaIman filtering

Example from Target Tracking : Model

Position of frigate: x; = (North,, East;, NorthVelocity,, EastVelocity,)'.
X1 ~ N(O, Qo)
Dynamical model:

Xt41 = xt +ve,ve ~ N(O, Q)

O O O
O O = O
O O
= O S, O

o v — North,—NorthSUB, - 2
Data equation: y; = arctan East _EastSUB, + wy, we ~ N(O, r?)
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|—Kalman filtering

Example from Target Tracking : Filtering distribution

Kalman filter.

» The nonlinear equation model is linearized in the solution - Extended
» Filtering density p(x¢|y1, -

,¥t) is approximate Gaussian.
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[ Kalman filtering

Example from Target Tracking : Results

Map view Map view Map view
o e o
o0 Upperconcgoc bour - Upperconidnds pund o0 Upperconcnd bound
. . o
. s . st B
S e £
H / B > 2
Frgate Zrige
2000 2 2000 3 2000
Lowerconence bound Lower conidance bound
- o
of ® sumaie of # swmarne .
East East East
o» <& =» «=» =
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Ensemble Kalman filter

Monte Carlo sampling for filtering

Common sequential Monte Carlo methods:

> Particle filtering : re-weighting of realizations based on data-match.
Pros: exact in the asymptotic limit. Cons: challenging to make it
work for high-dimensional methods.

» Ensemble Kalman filtering : moves realizations based on correlations
with data. Pros: often works well in high-dimensional systems.
Cons: no guarantee of performance, even in the number of
ensembles go to infinity.
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LEnsembIe Kalman filter

Ensemble Kalman filter approach

» Method for highly nonlinear dynamical models or measurements
models.

» The forward models are black-box models. (No explicit form.)

» Using Monte Carlo realizations to represent probability distribution.

» The updating of ensembles is based on correlations between state
variables and data.



Short Course on Statistics and Uncertainty Part V
LEnsembIe Kalman filter

Ensemble-based Kalman approximation

vV vVvYyVYyYy

Ensemble size B. Repeat for t =2,..., N

xb ., b=1,..., B approximately from p(x:_1|yq,---,¥:_1)-
Predictive realizations x? = f(x?_;;8,), b=1,...,B.
Predictive data y? = g(x?) + €, €: ~ N(0, R;).

L. . -1
Kalman weight matrix K; = X, ¢ (Zy%t + Rt) determined
empirically from forecast ensembles (x2,y?), b=1,...,B.

Kalman update of bth ensemble member at step t

x?=x2+ K.y, — y?)
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|—Ensemble Kalman filter

Univariate example - forecast samples

xP~p(x),  yP=xP+ N(0,5%)

16
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|—Ensemble Kalman filter

Univariate example - regression fit

parameter m

10

25
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|—Ensemble Kalman filter

Univariate example - observation

y=09.

®

parameter m
o

DA
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|—Ensemble Kalman filter

Univariate example - analysis or update step

parameter m
o
T

-15 -10 -5 0 5 10 15 20 25
data d £ DAE
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|—Ensemble Kalman filter

Univariate example - prior and posterior
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Nonlinear examples

Geologic process models

Differential equation for sedimentation, corrected with data.

* Start with initial surface z at time ¢,
* Surface will “diffuse” to yield new top surface z} at time t,

* Elevation of surface j at time t; is z}‘ forj=1,..,k

22
1 2
2z 21
2
2
= 2 0

u}
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[ Nonlinear examples

Time evolution of ensemble

Elevation forecast at timestep 1

40
200 35
100 30 z

25 §

£ O 5

N 203

-100 5 E
5
-200 10 ?

0 5

10 20
s 10 15 0
) 0 o
x (index) y (index)
o = = = = 9acn
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Nonlinear examples

Time evolution of ensemble

Elevation analysis at timestep 1

200

100

-100

-200

10
x (index) y (index)

15

20

40

Standard deviation (m)
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Nonlinear examples

Time evolution of ensemble

Elevation forecast at timestep 2
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Nonlinear examples

Time evolution of ensemble

Elevation analysis at timestep 2

200

100

-100

-200

x (index) y (index)

40

Standard deviation (m)
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Nonlinear examples

Time evolution of ensemble

Elevation forecast at timestep 3
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Nonlinear examples

Time evolution of ensemble

Elevation analysis at timestep 3

40

200

100

-100

-200

Standard deviation (m)

x (index) y (index)
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Nonlinear examples

Time evolution of ensemble

Elevation forecast at timestep 4

40
200 5
100 30 ~

3

_ s §

3 2

N 20 3
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200 10 %
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Nonlinear examples

Time evolution of ensemble

Elevation analysis at timestep 4

40
200

35

100

-100

-200

Standard deviation (m)

x (index) y (index)
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Nonlinear examples

Time evolution of ensemble

Elevation forecast at timestep 5

40
200 .
100 30 ~
3
_ s 5
£ g
N 20 8
-100 g
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Nonlinear examples

Time evolution of ensemble

Elevation analysis at timestep 5

200

100

g 0
N

-100
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Nonlinear examples

Time evolution of ensemble

z (m)

150 Elevation and sediment proportions analysis at time 5

100 | Clay .

50

-100

-150

-200

10 12 14 16 18 20
y (index)
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Nonlinear examples

Time evolution of ensemble

Sea level parameter - constant: 0(t) = 0o, tstart < t < tend

Sea level (m)

500
400
300
200
100
0
-100
-200
-300
-400

Sea level - forecast and analysis

—~
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Nonlinear examples

Reservoir simulation example

Saturation time T

Easting

Repeated seismic data assimilation.
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Nonlinear examples

EnKF approximation

» Generate B realizations of porosities, permeabilities and initial
saturation. Repeat the following over time:

» Forecast saturations with fluid flow simulator, for all realizations.

» Forecast seismic data for all realizations, using geophysical relations.

» Use forecast reservoir variables and seismic data to train the Kalman
gain.

» Update ensemble members using the Kalman update and the
observed seismic response.
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Nonlinear examples

Reservoir example results (standard and localized version)

Exact Saturation EnKF: Predicted Saturation EnKF CL: Predicted Saturation

0.6 06
0.4 0.4
0.2 0.2
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Summary

Course summary

» Statistical models and concepts

> Statistical dependence and graphical models
» Linear Bayesian inversion

» Markov chain Monte Carlo sampling.

> State space models and Bayesian filtering.

u}
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