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1a)
H0: µ1 = µ2, H1: µ1 > µ2.
Here, x̄ − ȳ ∼ N(µ1 − µ2, σ2

1/n1 + σ2
2/n2).

We use the assumption of the same variance in the two groups, estimated
by s2

pool. Then

T = x̄ − ȳ

spool

√
1/7 + 1/5

∼ t10

We reject H0 if the observed T > t10,0.95.
Here, we get T = 19.64−17.62

2.23
√

(1/7+1/5)
= 1.55. The upper 0.05 percentile is

t10,0.95 = 1.81. We do not reject H0. The mean fluoride level is not signifi-
cantly larger for cows grazing near the industrial area.

1b)
H0: σ2

1 = σ2
2, H1: σ2

1 ̸= σ2
2.

Under H0, we have that

F = s2
1

s2
2

∼ f6,4

We reject H0 if the observed F > f6,4,0.975 = 9.20 or F < f6,4,0.025 = 0.16.
Here, we get F = 5.17/4.65 = 1.11. We do not reject H0.
The approach of using spool as a common variance in a) is then valid.

1c)
The Wilcoxon test forms the rank sum for each sample. Denote ranks by

r1, . . . , r12 and group label by g1, . . . , g12, then

W1 =
12∑

j=1
rjI(gj = 1), W2 =

12∑
j=1

rjI(gj = 2)

The hypothesis test is H0: µ1 = µ2, H1: µ1 > µ2. We only assume that
the two sample distributions are symmetric. Then, under hypothesis H0, the
rank-sum W2 should not be too small.
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Polluted 21.3 18.7 23.0 17.1 16.8 20.9 19.7
Unpolluted 14.2 18.3 17.2 18.4 20.0

Polluted ranks 11 7 12 3 2 10 8
Unpolluted ranks 1 5 4 6 9

Table 1: Data and ranks.

Ranking the data (Table 1), we get W1 = 2+3+7+8+10+11+12 = 53
and W2 = 25. This means that U2 = 25 − 5·6

2 = 10.
Using the normal approximation of this test statistic for the smaller group

(U2), we have (under H0) that

U2 = W2 − n2(n2 + 1)
2 ≈ N(7 · 5

2 ,
5 · 7 · 13

12 ) = N(17.5, 6.162),

Observed Z = 10−17.5
6.16 = −1.22, which is not smaller than the percentile

z0.05 = −1.645. We do not reject H0.
At significance level α = 0.05, an exact test (Table) with 7 (larger group)

and 5 (smaller group) has 6 as critical value for U2 (the smallest sample).
The p-value of 10 is 0.134. We do not reject H0.

2a)
H0: uniform distribution, H1: not uniform distribution.
Under H0, we have that the goodness of fit statistic is χ2

k−1, where k is
the number of classes (here 4).

The expected numbers in every bin, according to hypothesis H0, are ei =
54/4 = 13.5, i = 1, 2, 3, 4.

X =
4∑

i=1

(oi − ei)2

ei

= (9 − 13.5)2/13.5 + 3 · (15 − 13.5)2/13.5 = 2

The critical limit is χ2
0.05,3 = 7.81. The difference in class numbers can be

attributed to random variation. We do not reject H0.

2b)
H0: independence, H1: not independent
Let A be the outcome (bin) of Day 1 and B be the outcome (bin) of

Day 2. Under H0 about independence; P (A ∩ B) = P (A)P (B), for all A
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and B in the sample space of bins. We can construct P (A) and P (B) from
the row and column sums, and this forms the expected numbers which are
eA,B = nP (A)P (B) = NANB/n. Here, grand total is n = 53, while column
and row totals are NA and NB respectively.

Many of the expected numbers in the table entries are similar, with the
15 repeating several times as NA or NB. Table 2 shows both observed and
expected values (parentheses).

Day 1(1-8) Day 1(9-16) Day 1(17-24) Day 1(25-32)
Day 2(1-8) 0 (1.36) 0 (2.54) 5 (2.54) 4 (2.54) 9
Day 2(9-16) 4 (2.26) 0 (4.25) 0 (4.25) 11 (4.25) 15
Day 2(17-24) 4 (2.11) 10 (3.96) 0 (3.96) 0 (3.96) 14
Day 2(25-32) 0 (2.26) 5 (4.25) 10 (4.25) 0 (4.25) 15

8 15 15 15 53

Table 2: Data with observed and expected (parantheses) values.

The test statistic here is then

X =
16∑

i=1

(oi − ei)2

ei

Under H0, the it is approximately distributed as χ2
(k−1)(k−1) = χ2

9.
Here, with the many 0s in observed values, we can quickly see that the

test statistic becomes at least 3 · 4.25 + 2 · 3.96, which is already bigger than
the critical limit is χ2

0.05,9 = 16.9.
The full sum is

X =
16∑

i=1

(oi − ei)2

ei

= (0 − 1.36)2/1.36 + . . . + (0 − 4.25)2/4.25 = 60.9

We reject H0.
Note that the approximation requires expected numbers in each bin to

be reasonably large (a rule-of-thumb is np > 5). Here the numbers are
somewhat small. Some categories could potentially be merged. Nevertheless,
the rejection appears to be very clear.

3a)

yi = β0 + x1,iβ1 + x2,iβ2 + x3,iβ3 + ϵi, i = 1, . . . , 20
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The assumption is that the noise terms ϵi ∼ N(0, σ2) and independent.
For any effect,

Tβ = β̂

sβ

.

This means that the two first missing numbers are: sβ1 = 15.306/4.647 =
3.29, Tβ2 = 0.0485/0.0784 = 0.62.

For the p-value, we consider how likely the observed T value (or some-
thing more extreme) is. The two-sided test means that p-value= 2P (t16 <
−1.631) = 2P (t16 > 1.631) ≈ 2 · 0.06 = 0.12. (We see that value of 1.631
is between the quantiles of 0.05 and 0.075 for a t-distribution with 20-4=16
degrees of freedom.)

3b)
The growth of a fish per year is β1. With 20 − 2 = 18 degrees of freedom

in the t-distribution, we have

P (−t18,0.05 <
β1 − β̂1

sβ1

< t18,0.05) = 0.90

Moving elements around, we have

P (β̂1 − sβ1t18,0.05 < β1 < β̂1 + sβ1t18,0.05) = 0.90

Here, t18,0.05 = 1.734, and then β̂1 ± sβ1t18,0.05 = 16.2 ± 2.807 · 1.734 =
(11.3, 21.1) mm.

The fitted model of different ages is ŷ(x1) = 48.8 + 16.2x1, which gives
ŷ(2) = 81.2, ŷ(2) = 113.6 and ŷ(7) = 162.2. Figure 1 shows the fitted line
and the data. The model is overpredicting the data for small ages and then
underpredicting for intermediate age before overpredicting again for high age.
Residuals would show a clear pattern of negative, positive and then negative.

3c)
R2 is defined by the explainability of the regression model fit as part of

the total variability. Generally, the total variability in the data (yi) from the
mean (ȳ), can be split in two parts, one explained by the regression model
(ŷi) and one part with the residual variation;

SST = SSR+SSE, SST =
20∑

i=1
(yi−ȳ)2, SSR =

20∑
i=1

(ŷi−ȳ)2, SSE =
20∑

i=1
(yi−ŷi)2
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Figure 1: Sketch of fitted line and data. Residuals would show a pattern of
negative, positive and then negative.

R2 = SSR/SST = 1 − SSE/SST . This R2 always increases when one
adds more covariates in the model. The adjusted R2

adj = 1 − SSE/(n−k−1)
SST/(n−1) is a

variant of R2 that compensates for the number of covariates (k) in the model.
This does not always increase when more covariates go into the model. Here,
R2 and R2

adj are both much larger for model c) than for a) and b).
The largest length value is where the derivative of the fitted quadratic

curve is 0. We denote this by x∗
1 We have

dŷ

dx
= β̂1 + 2β̂2x

∗
1 = 0 ↔ x∗

1 = − β̂1

2β̂2

In this case we get x∗
1 = 83.715/(2(−7.584)) = 5.52.

The variance of this is approximated by linearization (derivatives in a
Taylor expansion of the function x∗

1(β̂1, β̂2).
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Var(x∗
1) = [dx∗

1

dβ̂1
]2Var(β̂1) + [dx∗

1

dβ̂2
]2Var(β̂2) + 2[dx∗

1

dβ̂1
][dx∗

1

dβ̂2
]Cov(β̂1, β̂2)

= [1/(2 · 7.58)]2 · 8.472 + [(83.72/(2 · 7.582)]2 · 0.942

+2[1/(2 · 7.58)][(83.72/(2 · 7.582)](−7.86) = 0.162

4a)

Â = 92.2 + 93.7 + 92.7 + 92.9
4 − 88.1 + 90.1 + 92.1 + 93.1

4 = 2.025

From the D column, we recognize that the generator is D = ABC. This
means that several effects are confounded: A = BCD, B = ACD, C =
ABD, AB = CD, AC = BD, AD = BC.

4b)
We can specify the variance from the three linear combinations giving the

interactions, AB, AC, AD. (The other 5 linear combinations of data give
the mean and four main effects.)

s2
Eff = ÂB

2 + ÂC
2 + ÂD

2

3

= (0.3252 + 1.8252 + 0.5752)/3 = 1.122

This means that TA = Â/sEff = 1.81, while t0.025,3 = 3.18. The effect of
factor A is not significantly large.
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