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Introduction

The Earth’s subsurface harbors critical resources and opportunities: where to
find oil, where to store CO2, how groundwater flows, and where minerals accu-
mulate. Yet we can only observe this hidden world through sparse, expensive
measurements—drill holes that pierce the earth like needles sampling a vast
tapestry. From these limited observations, we must reconstruct entire three-
dimensional geological architectures that control billion-dollar decisions and
environmental outcomes.

This thesis addresses a fundamental challenge in geosciences: how do we
generate realistic models of subsurface geology that honor our sparse observa-
tions while capturing the uncertainty inherent in such systems? The problem is
particularly acute when dealing with categorical geological variables—distinct
rock types like sandstone, shale, and limestone that form complex spatial pat-
terns critical for resource extraction and environmental management.

1.1 The Geostatistical Challenge

Consider a typical oil reservoir characterization problem. We have drilled per-
haps a dozen wells across an area spanning several square kilometers, each
well providing a one-dimensional profile of rock types encountered at differ-
ent depths along the well path. Additionally, seismic surveys provide indirect
information about rock properties across the entire reservoir volume, though
with lower resolution and significant uncertainty in the rock type interpretation.
From these sparse vertical lines of direct data and extensive but ambiguous
seismic observations, we must infer the three-dimensional distribution of rock
types throughout the entire reservoir volume—millions of grid cells, each as-
signed to one of several geological facies, with uncertainty statements. The
challenge is compounded by several factors unique to geological systems:

Categorical Nature: Unlike temperature or pressure that vary continuously,
rock types are discrete categories with sharp boundaries. A sandstone layer
does not gradually transition into shale; the contact is abrupt. These sharp
transitions control fluid flow—a connected sandstone channel can transport oil
across kilometers, while a thin shale barrier can completely block flow.
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Introduction

Complex Spatial Patterns: Geological facies are not randomly distributed.
They follow patterns dictated by ancient depositional processes—meandering
rivers that created sinuous sand channels, storms that spread sheet-like sand
bodies, or quiet seas that accumulated thick shale blankets. These patterns
exhibit both large-scale trends and fine-scale variability that must be captured
in our models.

Connectivity Criticality: In subsurface applications, connectivity matters
more than local accuracy (Caers and Zhang, 2004). A model with incorrect
connectivity, whether broken connections that exist in reality or spurious con-
nections that do not, can lead to costly errors in decision-making, such as
misplaced wells during oilfield development.

High Dimensionality: A modest 100× 100× 50 grid with 5 rock types
contains 5500,000 possible configurations—a space so vast that exhaustive ex-
ploration is impossible. We must find clever ways to navigate this space and
identify configurations consistent with our observations.

This forces us to adopt sampling-based approaches that can efficiently ex-
plore the space of plausible models without attempting to evaluate every possi-
ble configuration.

1.2 The Bayesian Conditioning Framework

Bayesian conditioning provides a principled approach to this challenge by com-
bining prior geological knowledge with observational data. The framework
consists of three key components:

Prior Model P (x): This probabilistic model encodes our understanding of
how geological facies denoted x are spatially distributed based on depositional
processes, analogues, and geological principles. Throughout this thesis, we ex-
plore various prior models—from simple statistical approaches like Truncated
Gaussian Random Fields to complex rule-based models that explicitly encode
stratigraphic principles.

Data Likelihood P (d|x): This observation model function describes how
our data, denoted d, relate to the true subsurface. Sometimes this relationship
is deterministic (well data directly samples rock types), while other times it is
probabilistic (seismic data provides indirect information about rock properties).

Posterior Distribution P (x|d): Bayes’ rule combines prior and likelihood
to define the posterior—all possible subsurface configurations consistent with
both our geological understanding and observed data. The computational chal-
lenge lies in efficiently exploring this posterior to generate multiple plausible
realizations that capture subsurface uncertainty.
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1.2 The Bayesian Conditioning Framework

Figure 1.1: Geological conditioning problem. Top: Conceptual cross-section of a
wave-dominated shore-face parasequence coloured by categorical facies (green = silt-
stone, yellow = sandstone, brown = shale, grey = mudstone). Dashed lines sketch a
family of possible bed-set boundaries in the prior model, while the two vertical well
bores (white) pierce the sequence and record lithology at discrete depths. Bottom:
Gamma-ray logs from the two wells: high values indicate shale and silt, medium shale
and low values sand. These logs are the data that must be honored. The Bayesian
conditioning task is to generate an ensemble of facies realisations honoring both the
prior distribution and the observed well data.
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1.3 Computational Approaches and Challenges

The fundamental computational challenge in Bayesian conditioning is explor-
ing the posterior distribution P (x|d). For categorical spatial models, this poste-
rior often consists of disconnected regions in a vast discrete space, making tra-
ditional optimization methods ineffective. Two main computational paradigms
have emerged:

Explicit Methods: These maintain the full Bayesian framework, using
techniques like Markov Chain Monte Carlo (MCMC) to explore the posterior
(Metropolis et al., 1953; Hastings, 1970). While theoretically elegant and
asymptotically exact, these methods face challenges in high-dimensional spaces
with complex constraints. Sophisticated strategies like tempering and blocking
help navigate the space, but convergence can require millions of iterations with
Markov chain updating.

Implicit Methods: These bypass explicit posterior computation by learn-
ing direct mappings from data to realizations. Multiple-point statistics (MPS)
methods (Strebelle, 2002) pioneered this approach by using training images to
capture complex patterns, replacing variogram-based models with direct pat-
tern sampling. However, given machine learning’s demonstrated superiority
in pattern recognition tasks across domains, it is natural to expect neural net-
works to excel here as well. By training on thousands of prior samples and
their corresponding data, deep learning models can provide near-instantaneous
conditioning while potentially capturing more complex patterns than traditional
MPS. Nevertheless, these methods may miss rare configurations and can gen-
erate geologically implausible results that violate fundamental constraints.

1.4 Evaluating Posterior Sampling Methods

A critical but often overlooked challenge in Bayesian conditioning is evaluat-
ing the quality of posterior samples. When multiple methods claim to solve
the same conditioning problem—whether through MCMC, neural networks, or
other computational approaches—how do we determine which performs bet-
ter? For spatial categorical models, this requires careful consideration of what
statistical properties matter most for the intended application.

The evaluation of posterior samples typically proceeds through a hierarchy
of statistical comparisons:

First-order Statistics: The most basic level examines marginal distribu-
tions—do the generated samples maintain the expected proportions of each
facies type from the prior model or training data? For instance, if our prior
indicates 30% sandstone, 50% shale, and 20% limestone, do the conditional
realizations preserve these proportions away from data locations? While nec-
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1.5 Thesis Contributions

essary for consistency, matching global proportions alone is insufficient. A
random arrangement of facies with these exact proportions would fail to cap-
ture any meaningful geological structure.

Second-order Statistics: Spatial correlations capture how facies relate to
their neighbors through metrics like variograms, connectivity functions, and
transition probabilities. These statistics reveal whether sand bodies have appro-
priate dimensions, whether facies boundaries occur at realistic frequencies, and
whether spatial continuity matches our geological understanding.

Higher-order Statistics: Complex spatial patterns often require statistics
beyond pairwise correlations. Multiple-point statistics, cluster distributions,
and morphological measures capture characteristics like channel sinuosity, ob-
ject shapes, and hierarchical organization that define realistic geological archi-
tectures.

Feature Summary Statistics: Beyond individual statistics, composite met-
rics attempt to capture overall structural similarity. Generic structural fea-
tures—such as object shapes, spatial arrangements, and multi-scale patterns—can
provide resolution-invariant comparisons between images regardless of spe-
cific application. These metrics, originally developed in computer vision for
assessing perceptual similarity, have found increasing use in geological applica-
tions where they complement domain-specific measures. Meanwhile, domain-
specific features often matter most for practical decisions. In reservoir mod-
eling, connected pore volume, breakthrough times, and flow-based metrics
directly relate to the economic value of a model. The combination of generic
structural metrics and application-driven statistics provides a more complete
assessment of model adequacy, capturing both visual realism and functional
performance.

The challenge lies not just in computing these statistics, but in determining
which matter most for a given application and how to weight them appropriately.
A method that exactly matches the variogram of the prior model or training
data might fail to capture critical connectivity patterns. Conversely, matching
complex features might come at the cost of basic statistical properties.

1.5 Thesis Contributions

This thesis advances Bayesian conditioning of geostatistical categorical models
through five interconnected papers:

Paper I tackles the challenge of configuration uncertainty in deviated wells,
where the same geological layer can be intersected multiple times, creating
complex multimodal posteriors that traditional methods struggle to capture.

Papers II, III, and IV explore neural network approaches from comple-
mentary angles: Paper II introduces conditional diffusion models that honor
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hard constraints without retraining; Paper III benchmarks these against clas-
sical geostatistical priors; Paper IV investigates the sampling distribution of
vision transformers by directly analyzing their likelihood functions, revealing
systematic biases in how these models capture spatial pattern.

Paper V develops new metrics for comparing spatial categorical images
across different methods, addressing the fundamental challenge of validating
models that operate at different scales and resolutions.

1.6 Thesis Overview

The remainder of Part I provides the technical foundation for understanding
these contributions:

• Chapter 2 reviews spatial categorical models—the mathematical frame-
works for representing geological facies distributions

• Chapter 3 examines Bayesian inference machinery, from classical MCMC
to modern deep learning approaches

• Chapter 4 discusses image quality assessment metrics essential for vali-
dating and comparing different methods

• Chapter 5 connects these concepts to the specific innovations in each
paper

Together, these chapters demonstrate how combining geological knowl-
edge, sparse observational data, and advanced computational methods enables
us to peer into the subsurface and make better decisions about our planet’s
hidden resources.
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Spatial Categorical Models

The quest to represent spatial categorical fields—distinct rock types, soil classes,
or land use categories—has driven decades of innovation in geostatistics and
spatial modeling. From the simplest pixel-based approaches to sophisticated
process simulations that mimic physical phenomena, the field has evolved along
two competing axes: mathematical tractability versus geological realism.

Figure 2.1 illustrates this spectrum of spatial categorical models. On the left,
Markov Random Fields (MRFs) represent the mathematical extreme—models
defined through local conditional distributions that enable elegant theoretical
analysis (Besag, 1974; Geman and Geman, 1984). These models, borrowed
from statistical physics and image processing, characterize spatial dependence
through neighborhood interactions, offering computational efficiency at the cost
of limited geological expressiveness.

Moving rightward, Truncated Gaussian Random Fields (TGRFs) emerged
as a practical compromise (Matheron, 1973). By thresholding continuous
Gaussian fields, TGRFs inherit the well-understood covariance structure of
Gaussian processes while producing categorical realizations. This approach,
refined through plurigaussian extensions (Armstrong et al., 2011), became the
workhorse of petroleum reservoir modeling, balancing mathematical tractability
with the ability to reproduce essential geological features like spatial correlation
and anisotropy.

The recognition that two-point statistics inadequately capture complex ge-
ological patterns motivated Multiple-Point Statistics (MPS) (Guardiano and
Srivastava, 1993). Rather than relying on variograms, MPS methods scan
training images to learn pattern distributions, then reproduce these patterns
in simulations (Strebelle, 2002). This data-driven approach, exemplified by
algorithms like SNESIM (Strebelle, 2002) marked a shift from parametric to
example-based modeling.

Further right along the spectrum, object-based models directly place geo-
metric primitives—channels, lobes, or fractures—according to geological rules
(Deutsch and Wang, 1996). These models excel at reproducing specific ge-
ological architectures with known geometries but struggle with conditioning
to dense data. Rule-based approaches generalize this concept, encoding ge-

9



Spatial Categorical Models

ological knowledge through hierarchical rules and stratigraphic relationships
(Pyrcz et al., 2009), offering a middle ground between geometric simplicity
and process complexity.

At the far right, process-based models simulate the physical mechanisms
of sediment transport, deposition, and erosion (Griffiths, 2001). These for-
ward stratigraphic models produce the most geologically realistic results by
solving governing equations, but their computational demands and parameter
uncertainty limit practical application to conditioning problems.

The machine learning revolution has introduced a new dimension to this
spectrum, with neural networks learning implicit representations from data
(Laloy et al., 2019; Chan and Elsheikh, 2017). These ML-based approaches,
shown below the traditional spectrum in Figure 2.1, promise to combine the
ease of conditioning from the left with the realism from the right—though their
position in this trade-off remains an active area of research.

Throughout this chapter we use a shared nomenclature for all spatial cat-
egorical models. We denote the facies variable on the spatial grid by x =
[x1, . . . , xN ]T ∈ZN

[1,C ], where each xi represents a categorical value at location
index i , and C is the number of categories. Throughout our applications, we
work with 2D square grids such that n2 = N , where n is the number of cells
in each row and column. Our primary objective is to establish a prior belief
over this 2D grid, denoted by probability P (x). While numerous choices exist
for P (x), we focus on those most relevant to the papers outlined in this the-
sis. This is not intended as a comprehensive review of all spatial categorical
models, but rather a focused examination of the specific modeling approaches–
TGRFs, MRFs, and rule-based geostatistical models–that we have employed
and extended in our work.

Section 2.1 examines truncated Gaussian random fields, the industry stan-
dard that balances practicality with theory. Section 2.2 explores Markov ran-
dom fields, which provide the mathematical foundation for many spatial models.
Section 2.3 describes rule-based approaches that encode geological knowledge
directly. While not exhaustive, these models represent the key prior distribu-
tions we employ and extend throughout our work.
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2.1 Truncated Gaussian Random Fields

Figure 2.1: Conceptual spectrum of prior models for categorical facies simulation.
Panels (left to right) illustrate: (i) Markov Random Field models (MRF); (ii) two–point
statistical models (TGRF/MRF); (iii) multiple–point statistics (MPS)(Guardiano and
Srivastava, 1993; Strebelle, 2002; Caers and Zhang, 2004); (iv) surface- or rule-based
models; (v) object-based models (Deutsch and Wang, 1996); and (vi) process-based
forward stratigraphic simulations.

2.1 Truncated Gaussian Random Fields

TGRFs emerge from GRFs, which are continuous-valued fields (Matheron,
1973; Armstrong et al., 2011). The truncation process transforms continuous
fields into discrete categorical fields through thresholding operations.

2.1.1 Gaussian Random Fields: Foundation and Properties

A GRF is an infinite-dimensional Gaussian distribution characterized by two
fundamental functions:

• The mean function µ(s), which specifies the expected value at any spatial
location s

• The covariance function Σ(s,s′), which describes the covariance be-
tween values at locations s and s′

These continuous functions can theoretically be evaluated at any spatial lo-
cation, enabling arbitrarily fine-grained discretization. However, computational
constraints necessitate discretization onto finite grids of size N .

2.1.2 Stationarity

The statistical properties of GRFs are characterized by their stationarity:

• Stationary Mean: µ(s) = µ for all s, meaning the expected value is
constant across the field.
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Spatial Categorical Models

• Stationary Covariance: Σ(s,s′) = Σ(h) where h = |s− s′|, meaning co-
variance depends only on the separation vector, not absolute position.

• Non-stationary fields: When either condition is violated, creating spa-
tially varying statistical properties.

Figure 2.2 illustrates these concepts through three representative examples:
(A) a field with non-stationary mean but stationary covariance, showing a clear
spatial trend; (B) a field with zero mean but non-stationary covariance, exhibit-
ing spatially varying correlation structures; and (C) an anisotropic field with
direction-dependent covariance.

Figure 2.2: 3 realizations of Gaussian Random Fields with different parameterizations.

2.1.3 Covariance Functions and Spatial Structure

The covariance function Σ(h) must satisfy mathematical constraints to ensure
validity—specifically, it must yield a positive definite covariance matrix for any
discretized field. Popular choices include:

• Gaussian covariance: Σ(h) =σ2 exp
(
− ∥h∥2

2ℓ2

)
produces smooth, differen-

tiable fields

• Matérn covariance: Σ(h) = σ2 21−ν
Γ(ν)

(p
2ν ∥h∥

ℓ

)ν
Kν

(p
2ν ∥h∥

ℓ

)
offers tun-

able roughness through parameter ν (Rasmussen, 2004)

• Exponential covariance: Σ(h) = σ2 exp
(
− |h|

ℓ

)
generates more rugged,

non-differentiable fields

Here, σ2 represents the variance, ℓ the correlation length, and ∥h∥ the
Euclidean distance. The correlation length ℓ controls the spatial extent of
interactions between grid cells—larger values produce broader, more connected
structures.
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2.1 Truncated Gaussian Random Fields

2.1.4 Probability Distribution of GRFs

When discretized onto a grid with N points, a GRF follows a multivariate
Gaussian distribution. For a field y = [y1, . . . , yN ]T with mean vector µ =
[µ1, . . . ,µN ]T and covariance matrix Σ, the probability density function is:

P (y) = 1

(2π)N /2|Σ|1/2
exp

(
−1

2
(y−µ)TΣ−1(y−µ)

)
, (2.1.1)

where |Σ| denotes the determinant of the covariance matrix. For stationary
fields, µi =µ for all i , and the covariance matrix elements are Σi j =Σ(|si −s j |).

This explicit form enables direct computation of probabilities and efficient
sampling through standard multivariate Gaussian techniques, making GRFs
attractive as priors in Bayesian conditioning problems.

2.1.5 Isotropy and Anisotropy

An isotropic field exhibits rotational invariance, where covariance depends only
on the magnitude ∥h∥. In contrast, anisotropic fields have direction-dependent
correlation structures, often parameterized through:

Σ(h) =σ2 f

(√
hT Ah

)
, (2.1.2)

where A is an anisotropy matrix encoding preferential directions and correlation
lengths and f represents a correlation function.

2.1.6 From GRFs to TGRFs: The Truncation Process

A TGRF transforms a continuous GRF into a categorical field through threshold-
ing. For an C -ary TGRF with categories {1,2, . . . ,C }, we define (C−1) threshold
values t1 < t2 < ·· · < tC−1 such that:

xi = k if tk−1 < yi ≤ tk , (2.1.3)

where yi is the continuous GRF value at location i , with t0 =−∞ and tC =+∞.
While TGRFs are conceptually straightforward to generate, their proba-

bility distribution lacks a tractable closed form. For a categorical field x =
[x1, . . . , xN ]T where each xi ∈ {1,2, . . . ,C }, the probability requires integrating
over all continuous GRF configurations that would yield this specific categori-
cal pattern:

P (x) = P (x1 = k1, x2 = k2, . . . , xN = kN ), (2.1.4)

where each constraint xi = ki translates to tki−1 < yi ≤ tki for the underlying
GRF value yi . This yields:

P (x) =
∫ tk1

tk1−1

· · ·
∫ tkN

tkN −1

P (y)d y1 · · ·d yN . (2.1.5)
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Spatial Categorical Models

If the underlying GRF were uncorrelated, this would factorize into a product
of independent one-dimensional integrals, each easily computed as differences
of cumulative distribution functions. However, the spatial correlation structure
that makes TGRFs useful for modeling geological patterns also makes this inte-
gral intractable. The multivariate Gaussian distribution P (y) with its full covari-
ance matrix prevents factorization, leaving us with a genuine N -dimensional
integral. Even for a modest 100× 100 grid, we face a 10,000-dimensional
integral with no closed-form solution.

The computational intractability of P (x) has profound implications for
Bayesian conditioning problems. While sampling from a TGRF prior is straight-
forward (generate GRF, then threshold), evaluating the prior probability of a
given categorical configuration which is essential for MCMC acceptance ra-
tios, typically requires approximation. This challenge has motivated several
alternative conditioning approaches:

• Sequential Gaussian simulation with indicator kriging (Journel, 1998)

• Variational approximations using factorized distributions (Blei et al.,
2017)

• Gibbs sampling of the underlying continuous field at conditioning loca-
tions (Armstrong et al., 2011)

The last approach represents the standard method for TGRF conditioning:
rather than working with categorical variables directly, Gibbs sampling operates
on the underlying continuous field. At each data location, values are drawn from
the continuous field that, when thresholded, produce the observed category.
Once these continuous values are fixed at data locations, the remainder of
the field can be generated through conditional simulation (e.g., kriging), and
the resulting continuous realization is then thresholded to produce the final
categorical field. This elegant solution leverages the tractability of Gaussian
conditioning while respecting the categorical constraints.

For a stationary GRF with mean µ and unit variance, the expected volume
fractions (category proportions) are determined by:

P (X = k) =Φ(tk −µ)−Φ(tk−1 −µ), (2.1.6)

where Φ(·) is the standard normal cumulative distribution function.
This framework allows direct control over category proportions through

threshold selection. For instance, setting t1 =µ in a binary TGRF yields equal
proportions P (X = 1) = P (X = 2) = 0.5, while adjusting thresholds creates bi-
ased fields favoring specific categories.

Figure 2.3 demonstrates how different GRF properties translate into cate-
gorical patterns when a single threshold is applied. The trending GRF produces
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2.1 Truncated Gaussian Random Fields

a binary field with a clear transition from one category to another, following
the underlying spatial gradient. The non-stationary covariance GRF creates
large connected regions where correlations are strong and fragmented patterns
where correlations are weak. The anisotropic GRF generates elongated categor-
ical boundaries aligned with the preferential correlation direction, resulting in
banded structures reminiscent of geological layers.

Figure 2.3: Binary TGRF realizations generated by thresholding the continuous GRFs
from Figure 2.2. Black represents category 1, white represents category 2, with equal
volume fractions (50% each). (A) Trending GRF, (B) Non-stationary covariance GRF,
(C) Anisotropic GRF.

Extension to multiple categories requires additional thresholds. Figure 2.4
shows three-category fields where the choice of two thresholds controls both
the volume fractions and the spatial arrangement of categories. The trending
field maintains smooth transitions between all three categories following the
underlying gradient. The non-stationary field exhibits scale-dependent behav-
ior—large homogeneous regions transition to small fragmented patches as the
correlation length varies. The anisotropic field produces layered structures with
elongated boundaries, creating patterns often observed in sedimentary geologi-
cal systems.
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Spatial Categorical Models

Figure 2.4: Three-category TGRF realizations using two thresholds on the GRFs
from Figure 2.2. Blue (category 1), white (category 2), and red (category 3) with
varying volume fractions. (A) Trending GRF (20% blue, 30% white, 50% red), (B)
Non-stationary GRF (30% blue, 50% white, 20% red), (C) Anisotropic GRF (50%
blue, 20% white, 30% red).

2.1.7 Extensions: Pluri-Gaussian Simulation

While TGRFs impose a natural ordering on categories through thresholding,
Pluri-Gaussian Simulation (PGS) relaxes this constraint by utilizing multi-
ple independent GRFs (Loc’h and Renard, 1992; Armstrong and Loc’h, 1994;
Gustafson and Caers, 1997). This approach enables direct transitions between
any pair of categories, better representing geological scenarios where, for exam-
ple, sandstone and limestone can be adjacent without requiring an intermediate
category. Another important aspect of pluri-Gaussian simulation is that it al-
lows the different fields to have different structures, such that the facies and
facies transitions can have different geometries. For instance, one GRF might
have long-range correlations to control large-scale geological features, while
another has short-range correlations to model local heterogeneities, providing
flexibility in representing complex geological architectures.
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Figure 2.5: Pluri-Gaussian Simulation (PGS) examples. Top row (A1, B1, C1):
Transition maps in Gaussian space showing how combinations of two independent
GRFs (G1, G2) or (G1, G3) are mapped to three categories: Red (R), White (W), and
Blue (B). Bottom row (A2, B2, C2): Corresponding PGS realizations demonstrating
different spatial connectivity patterns. A2 results from combining the GRFs in Panel
A) and B) from Figure 2.2 with the facies transition map in panel A1. B2 combines
the GRFs in Panel A) and C) from Figure 2.2 with facies transition map in panel B1.
C2 combines the same GRFs as B2 with the facies transition map from C1.

Figure 2.5 illustrates the PGS methodology through three different transi-
tion map configurations. Each configuration demonstrates how combinations
of two independent GRFs can be partitioned to create categorical fields with
equal volume fractions while allowing flexible spatial connectivity patterns that
would be impossible with single-GRF truncation methods.

TGRFs and PGS have proven valuable for modeling categorical spatial
structures across multiple disciplines. In petroleum reservoir modeling, they
characterize sandstone-shale sequences where connectivity controls hydrocar-
bon flow paths and recovery efficiency. For groundwater studies, they delineate
permeable units within clay sequences, critical for water resource management
and contamination assessment. In CO2 storage applications, they characterize
caprock integrity where seal continuity determines long-term storage security.
Agricultural applications include mapping soil types and crop classifications
where spatial correlation affects yield patterns and farming strategies.

17



Spatial Categorical Models

2.2 Markov Random Fields

While TGRFs model spatial dependence via an underlying continuous process,
an alternative is to encode dependency directly on the grid. Markov Random
Fields (MRFs) provide this complementary viewpoint. A MRF is a set of
random variables having the Markov property which can be described on an
undirected graph (Kindermann and Snell, 1980; Besag, 1974). In our case with
x = [x1, x2, . . . , xN ]T , we can let each variable xi represent a node in a graph,
and the connections between them describe dependence relations. This means
that if we have no edge between two nodes x j and xk , they are independent
given all other variables:

x j ⊥ xk |xV \{ j ,k}, (2.2.1)

where xV \{ j ,k} denotes all variables, except x j , xk . Since we are working with
2D grids, the edges are typically between cells that are in close proximity. For
example, we can choose neighbors within a certain Manhattan distance on the
grid. If we work on a 10×10 grid and pick neighbors of Manhattan distance
1, this creates a graph structure where each interior cell connects to its four
orthogonal neighbors. With Manhattan distance 2, the connectivity increases
significantly where each cell connects not only to its immediate neighbors but
also to diagonal cells and those two steps away in cardinal directions, creating
a denser graph with stronger spatial smoothing.

An important concept in graph theory is a clique. A clique is defined as a
set of nodes such that there is an edge between any two nodes in the set. The
maximal cliques are those cliques that cannot be extended by adding another
node while maintaining the fully connected property. For the simplest case
of first-order neighborhood, cliques are pairwise interactions. A second-order
neighborhood construction is visualized in Figure 2.6 alongside it is maximal
clique potentials in Figure 2.7 that are invariant under rotation and inversion
(interchange 0s and 1s).

Figure 2.6: Second-order neighborhood structure in MRF construction.
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Figure 2.7: Maximal clique potentials in MRF model.
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An important result is the Hammersley-Clifford theorem, which tells us
that we can represent the joint probability mass function of any MRF as:

P (x) = 1

Z
exp

(
− ∑
Λ∈C

VΛ(xΛ)

)
, (2.2.2)

where VΛ(xΛ) is the potential function of clique Λ, C is the set of all cliques
and Z is the normalization constant. This allows us to decompose the field
into individual terms over cliques where the log-probability can be expressed
as the sum of log-potentials. This means that all we have to do to make a valid
MRF is to define a set of cliques and their corresponding potentials (Besag,
1974; Tjelmeland and Besag, 1996). We denote the λ-values in Figure 2.7 the
maximal clique potentials.
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2.3 Rule-based Models

Figure 2.8: Markov Random Field realizations using a 12-template neighborhood
structure.

Figure 2.8 shows examples of MRF realizations using the neigbhourhood
structure in Figure 2.6. MRFs have the advantage over TGRFs that the probabil-
ity distribution function can be made completely tractable. However, they are
often more difficult to work with in practice because they require us to define
many components: all cliques and potentials, making it sometimes difficult
to control which geometries the prior model produces. Despite this complex-
ity, MRFs provide explicit control over local spatial dependencies and have
found applications in image processing, spatial statistics, and categorical field
modeling.

2.3 Rule-based Models

Figure 2.1 illustrates the spectrum of geostatistical modeling approaches. The
TGRFs and MRFs discussed in previous sections occupy the far left of this
spectrum, prioritizing mathematical simplicity and computational efficiency.
In this thesis, particularly in Papers I and II, we also work with rule-based
models that occupy a middle position, offering enhanced geological realism
while maintaining computational feasibility for conditioning problems.

Rule-based models encode geological knowledge through explicit rules gov-
erning spatial relationships between facies. Unlike the statistical approaches of
TGRFs and MRFs, these models directly incorporate physical and stratigraphic
principles to generate geologically plausible realizations. Consider a simple
example of sequential construction for a shallow marine environment:
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1. Define base surface: Generate initial topography z0(u, v) representing
the depositional surface, where (u, v) denote horizontal coordinates

2. Apply sea level: For current sea level ℓ (meters above datum), classify
locations based on water depth and assign facies xu,v :

• Deep marine: where ℓ− z0(u, v) > ddeep → deposit shale (xu,v = 1)

• Shallow marine: where dshallow < ℓ− z0(u, v) ≤ ddeep → deposit
sandstone (xu,v = 2)

• Subaerial: where ℓ− z0(u, v) ≤ dshallow → no deposition (xu,v = 0)

3. Update surface: z1(u, v) = z0(u, v)+∆z(u, v) based on deposition/erosion
rules, where ∆z represents sediment thickness

4. Iterate: Repeat for changing sea levels and sediment supply over time
steps t = 1, ...,T

This sequential process builds a 3D realization layer by layer, with each de-
cision conditioned on previous states. The prior probability emerges implicitly
from the rule cascade:

P (x) = P (z0)
T∏

t=1
P (ℓt |ℓt−1)P (xt |zt−1,ℓt )P (zt |zt−1,xt ), (2.3.1)

where xt represents the facies field at time t , zt is the topographic surface, and
ℓt is the sea level. However, this probability cannot be evaluated directly be-
cause the rule-based transitions P (xt |zt−1,ℓt ) are defined algorithmically rather
than analytically. We can sample from this distribution by forward simulation,
but computing the probability of a specific realization would require tracking
all possible paths that could lead to that configuration—a generally intractable
problem.

Rule-based approaches have shown promising results in specific applica-
tions. In fluvial systems, event-based models simulate channel migration and
avulsion to create realistic channel-belt architectures (Bridge and Leeder, 1992;
Pyrcz et al., 2009). Object-based models place geometric shapes representing
channels or lobes according to geological rules (Howell et al., 2008). Process-
based forward modeling simulates physical equations governing sediment trans-
port and deposition (Borgomano et al., 2020). However, it is important to note
that while these methods can generate geologically realistic models, their ap-
plication to conditioning problems remains challenging and computationally
intensive compared to the widespread industrial use of TGRF and MPS meth-
ods.

The implicit nature of P (x) in rule-based models presents unique challenges
for Bayesian conditioning. The fundamental challenge with rule-based models
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is that while generating unconditional realizations is straightforward—simply
run the forward simulation—conditioning on data is exceptionally difficult. Pro-
posals must respect the entire rule hierarchy, often requiring complex MCMC
schemes that modify underlying parameters rather than facies directly. This
asymmetry between easy unconditional generation and difficult conditioning
makes rule-based models ideal candidates for a different approach: generate
many unconditional realizations as training data for neural networks that can
then learn to perform conditioning efficiently. This strategy, explored in Papers
I and II, leverages the geological realism of rule-based models while sidestep-
ping their conditioning challenges.
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Having established the spatial categorical models that serve as our priors in
Chapter 2, we now address the central computational challenge: transforming
a prior P (x) into a posterior P (x|d) that honors observational data. This condi-
tioning problem, which incorporates sparse localized measurements into spatial
models, has been fundamental to geostatistics since its inception.

Sequential simulation methods provided early practical approaches for con-
ditioning. Sequential Indicator Simulation (Journel, 1983) visited each unsam-
pled location sequentially, drawing from locally estimated conditional distribu-
tions using indicator kriging. By transforming categorical variables into binary
indicators and applying kriging to each, SIS could honor exact data while ap-
proximately reproducing spatial statistics. Despite widespread adoption, the
method struggles to reproduce complex multi-point patterns and suffers from
order-dependence artifacts (Emery, 2004).

Simulated annealing, introduced to geostatistics by Deutsch (1995), refor-
mulated conditioning as an optimization problem. Starting from a random real-
ization, the algorithm iteratively proposes modifications and accepts or rejects
based on an objective function combining data misfit and pattern reproduction.
The temperature parameter, gradually decreased during optimization, controls
the trade-off between exploration and convergence. While capable of handling
complex objective functions, simulated annealing provides only a single "opti-
mal" realization rather than sampling from the posterior distribution.

The introduction of MCMC methods to geostatistics marked a paradigm
shift. Early work by Farmer (1987) and Hegstad et al. (1994) demonstrated
MCMC’s potential, with Tjelmeland and Besag (1996) providing a compre-
hensive framework for categorical MRF models. Unlike previous approaches,
MCMC provides samples from the true posterior distribution without requiring
analytical expressions or approximations. The Metropolis-Hastings algorithm
(Metropolis et al., 1953; Hastings, 1970) constructs a Markov chain whose
stationary distribution equals the target posterior, enabling rigorous Bayesian
conditional sampling. Despite theoretical elegance, MCMC methods face prac-
tical challenges: slow convergence in high dimensions, difficulty traversing
multimodal posteriors, and computational costs that scale poorly with model
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size (Hansen et al., 2012).
Deep learning opened entirely new possibilities for conditioning. Gener-

ative Adversarial Networks (GANs) (Goodfellow et al., 2014) learn to gener-
ate realistic realizations through adversarial training, with conditional variants
(cGANs) incorporating data constraints (Mirza and Osindero, 2014). Early
geostatistical applications demonstrated GANs’ ability to reproduce complex
geological patterns (Chan and Elsheikh, 2017; Mosser et al., 2017), but training
instability and mode collapse limited their reliability for accurately representing
the posterior sample space (Dupont et al., 2018).

Variational Autoencoders (VAEs) (Kingma and Welling, 2014) offered a
more stable alternative by learning probabilistic mappings between realizations
and latent representations. Conditioning could be performed by optimizing la-
tent codes to match data constraints (Laloy et al., 2019). However, the Gaussian
assumptions underlying VAEs often produce overly smooth realizations, failing
to capture sharp facies boundaries critical in categorical models (Canchumuni
et al., 2019).

More recent developments have addressed these limitations. Diffusion mod-
els (Ho et al., 2020; Song et al., 2021) achieve state-of-the-art generation qual-
ity through iterative denoising, with various conditioning strategies enabling
flexible data integration (Lee et al., 2025). Vision Transformers (Dosovitskiy
et al., 2020) leverage self-attention mechanisms to capture long-range depen-
dencies while providing explicit access to conditional probabilities, facilitating
uncertainty quantification (Yan et al., 2021).

It is relatively straightforward to generate unconditional realizations from
complex geological priors, whether TGRFs, object-based models, or process-
based simulations. However, conditioning these realizations on data typically
requires custom MCMC implementations tailored to each prior model. If neu-
ral networks can learn to perform universal conditioning, meaning mapping
from any data configuration to appropriate realizations, this opens entirely new
possibilities for using sophisticated geological priors that would otherwise be
impractical to condition. This vision motivates our exploration of neural ap-
proaches alongside classical MCMC, particularly in Paper IV where we inves-
tigate whether transformers can truly capture the complex distributions needed
for geological modeling.

3.1 Markov Chain Monte Carlo

MCMC methods provide the theoretical foundation for rigorous Bayesian con-
ditional sampling. The key insight is that we can construct a Markov chain
whose stationary distribution equals our target posterior P (x|d), enabling sam-
pling without computing the intractable normalization constant.
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While we present MCMC using categorical field notation x for consistency,
it is important to note that many geostatistical applications perform MCMC
in a parameter space that then maps to the categorical field. Object-based
models update object parameters (location, size, orientation) rather than grid
cells directly. Truncated Gaussian methods perform MCMC on the underlying
continuous Gaussian field, which is then thresholded to produce categories.
The principles remain the same, but the state space and proposal mechanisms
differ substantially.

For spatial categorical models, we seek samples from:

P (x|d) = P (d|x)P (x)∑
x′ P (d|x′)P (x′)

. (3.1.1)

The foundation of MCMC is the detailed balance condition. For a Markov
chain with transition kernel p(x∗|x), detailed balance requires:

P (x|d)p(x∗|x) = P (x∗|d)p(x|x∗). (3.1.2)

This condition ensures that the target posterior P (x|d) is the stationary dis-
tribution of the Markov chain—if we run the chain long enough, samples will
be drawn from the desired distribution.

The Metropolis-Hastings algorithm constructs a transition kernel by de-
composing it into a proposal distribution q(x∗|x) and an acceptance probability
α(x,x∗):

p(x∗|x) = q(x∗|x)α(x,x∗) for x∗ ̸= x. (3.1.3)

The key insight is choosing α to satisfy detailed balance while maximizing
acceptance rates (Algorithm 3.1).
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Algorithm 3.1 Metropolis-Hastings Algorithm

1: Initialize x(0) to satisfy data constraints
2: for t = 1 to T do
3: Select location i to update (randomly or systematically)
4: Propose new value x∗

i ∼ q(x∗
i |x(t−1)

i )

5: Form x∗ where x∗
j = x(t−1)

j for all j ̸= i
6: Calculate acceptance ratio:

α(x(t−1),x∗) = min

1,
P (x∗|d)q(x(t−1)

i |x∗
i )

P (x(t−1)|d)q(x∗
i |x(t−1)

i )


7: Draw u ∼Uniform(0,1)
8: if u <α(x(t−1),x∗) then
9: Accept: x(t ) = x∗

10: else
11: Reject: x(t ) = x(t−1)

12: end if
13: end for

The specific form of the acceptance ratio in Algorithm 3.1 is precisely
designed to satisfy the detailed balance equation. For single-site updates where
states differ only at location i , this choice of α(x(t−1),x∗) ensures the Markov
chain converges to the target posterior distribution.

The proposal distribution q(x∗
i |xi ) for individual sites critically affects ef-

ficiency. For categorical fields, a simple but inefficient approach proposes
new categories uniformly at random. More sophisticated proposals leverage
problem structure—proposing geologically plausible modifications or using
gradient information where available.

Gibbs sampling provides an important special case where proposals are al-
ways accepted. The key idea is then to sample each variable from its conditional
distribution given all others:

x(t )
i = x∗

i ∼ P (xi |x(t−1)
−i ,d), (3.1.4)

where x−i denotes all variables except xi . For MRF priors with hard data
constraints at locations D, the conditional distribution becomes:

P (xi |x−i ,d) ∝
exp

(
−∑

Λ∈Ci
VΛ(xΛ)

)
if i ∉D

I[xi = di ] if i ∈D,
(3.1.5)

where Ci is the set of all cliques containing location i , and VΛ are the clique
potentials.

28



3.2 Diffusion Models

Despite theoretical guarantees, MCMC faces significant practical challenges.
Convergence can require millions of iterations for complex models, multimodal
posteriors trap chains in local modes, and each iteration requires evaluating the
likelihood and prior—computationally expensive for sophisticated geological
models. While advances like parallel tempering (Earl and Deem, 2005) and
adaptive proposals (Haario et al., 2001) help, the tension remains: geological
realism requires complex priors that make MCMC increasingly difficult.

3.2 Diffusion Models

Diffusion models transform the conditioning problem into a denoising task,
learning to iteratively refine noisy samples into valid realizations that honor
data constraints. The approach rests on a surprisingly simple principle: if we
can learn to reverse a gradual noising process, we can generate new samples
(Ho et al., 2020).

The forward process progressively adds Gaussian noise to data. Starting
with a clean image x0, we add small amounts of noise at each timestep t ac-
cording to a variance schedule βt (typically increasing from β1 ≈ 0.0001 to
βT ≈ 0.02). After many steps, the original structure is completely destroyed,
leaving only Gaussian noise. Mathematically, the forward diffusion process q
is defined as

q(xt | xt−1) =N (
xt ;

√
1−βt xt−1,βt I

)
, (3.2.1)

q(xt | x0) =N (
xt ;

√
ᾱt x0, (1− ᾱt )I

)
, (3.2.2)

where αt = 1−βt and ᾱt =∏t
s=1αs is the cumulative product of α.

The second equation allows us to sample xt directly from x0 by:

xt =
√
ᾱt x0 +

√
1− ᾱtϵ, (3.2.3)

where ϵ∼N (0,I) is standard Gaussian noise.
The reverse process learns to denoise step by step. A neural network ϵθ

(where θ denotes the network parameters) is trained to predict the noise ϵ that
was added to create xt from x0. Given a noisy image xt , the network estimates
this noise component, allowing us to take a small step back toward the clean
image. The training objective is simply to minimize the difference between the
true noise added and the network’s prediction:

L= Et ,x0,ϵ[||ϵ−ϵθ(xt , t )||2]. (3.2.4)

Correspondingly, the parameterized reverse transition is modeled as

pθ(xt−1 | xt ) =N
xt−1;

1p
αt

(
xt − βtp

1− ᾱt
ϵθ(xt , t )

)
,σ2

t I

 , (3.2.5)
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where σ2
t is typically set to βt or learned concurrently with ϵθ.

For geological applications, working directly in pixel space is inefficient.
Geological images contain complex heterogeneity and long-range dependen-
cies—channels that snake across the entire domain, layer boundaries that extend
for kilometers. Latent diffusion models (LDMs) address this by first learning
a compressed representation of the geological patterns (Rombach et al., 2022).
Ideally, an autoencoder learns a compact latent representation that retains the
dominant geological structures while filtering out redundant details—although
some fine-scale information can still be lost in practice. Performing diffusion in
this latent space substantially reduces computational cost and, when the encod-
ing is sufficiently faithful, still allows the model to capture complex geological
patterns.

The elegance of conditioning emerges through cross-attention mechanisms.
As shown in Figure 3.1, conditioning data d = xc is encoded into a latent repre-
sentation zc and incorporated at each denoising step through cross-attention
layers. This allows the model to “pay attention” to the conditioning data
throughout the generation process, naturally steering the denoising toward re-
alizations that honor the observations. The same trained model can handle
arbitrary conditioning patterns—vertical wells, deviated wells, or scattered ob-
servations—without retraining.

Figure 3.1: Two-stage training for conditional LDMs. Stage 1 trains autoencoders
to compress spatial categorical fields into an efficient latent representation where geo-
logical structures are preserved. Stage 2 performs diffusion in this latent space, with
cross-attention mechanisms incorporating conditioning information zc at each denois-
ing step. The latent space representation is particularly effective for geological images
due to their inherent structure and long-range dependencies.

Alternative conditioning strategies exist, each with different trade-offs. Re-
placement methods directly enforce hard constraints by substituting known val-
ues after each denoising step. Gradient-based guidance (Dhariwal and Nichol,
2021) modifies the denoising direction using the gradient of the data likelihood.
These approaches trade off between exact data matching and maintaining the
learned distributional properties.
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However, diffusion models face their own challenges. Training requires
extensive computational resources and large datasets. The iterative denoising
process, typically 50-1000 steps, makes generation slower than single-forward-
pass methods. Most critically for categorical data, the Gaussian noise assump-
tion may not be ideal for discrete variables, requiring careful adaptation. While
these models excel at capturing visual patterns, ensuring they properly repre-
sent the full posterior distribution, including rare but important patterns while
also excluding impossible patterns, remains an open challenge.

3.3 Vision Transformers

Vision Transformers (ViTs) represent a fundamentally different approach to
spatial modeling by treating images as sequences of patches (Dosovitskiy et al.,
2020). Originally devised for natural language processing (Vaswani et al.,
2023), they have recently shown strong potential for spatial categorical data
because the self-attention mechanism can, in principle, capture long-range de-
pendencies—one of the key ingredients behind the success of large language
models. Nonetheless, a ViT does not automatically recover every geological nu-
ance; its fidelity ultimately depends on model capacity, training data diversity,
and how well the patch representation aligns with the underlying structures.

This patch-based reformulation enables powerful attention mechanisms
while also granting something rarely available in convolutional architectures:
explicit access to autoregressive conditional probabilities.

The architecture divides the spatial field into patches and models the joint
distribution autoregressively:

P (x|d) = P (x1|d),P (x2|x1,d), . . . ,P (xN |x1, . . . , xN−1,d). (3.3.1)

At first glance, this factorization seems intractable—the number of possible
configurations of x1, . . . , xN−1 far exceeds any reasonable training set. The key
insight is that transformers share parameters across all positions, allowing the
network to represent each conditional distribution P (xi |x1, . . . , xi−1,d) with a
single set of weights.

During training, illustrated in Figure 3.2, the model employs a masked-
prediction strategy. Random patches from unconditional prior samples (e.g.,
TGRF realizations) are masked, and the network learns to predict these masked
patches given only the visible ones. This is achieved by minimizing the cate-
gorical cross-entropy loss between predicted and true patch values, computed
only at masked positions. The self-attention mechanism enables the network
to dynamically focus on relevant parts of the visible field, learning spatial pat-
terns and dependencies rather than memorizing specific configurations. Conse-
quently, after exposure to thousands of geological realizations, a well-trained
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transformer can often generate plausible patterns for configurations it has never
seen, indicating that it has internalized broad spatial relationships—but it may
still misrepresent rare or extremely fine-scale features.

For conditioning, the autoregressive structure provides natural flexibility.
During inference, the model generates patches sequentially while respecting
data constraints. Data-aligned patches are simply fixed during generation. For
partial observations, we adjust the output probabilities:

p̃(xi = k|x<i ,d) =
0 if k conflicts with d,

p(xi=k|x<i )∑
j∈V p(xi= j |x<i ) otherwise,

(3.3.2)

where x<i = (x1, ..., xi−1) and V is the set of valid categories given constraints.

Figure 3.2: Vision Transformer architecture for spatial categorical modeling. During
training (top), random patches are masked and the model learns to predict them from
visible context. During inference (bottom), the model generates patches autoregres-
sively while respecting data constraints through logit adjustment.

The explicit probability modeling distinguishes ViTs from other generative
approaches. We can evaluate exact likelihoods, compare realizations proba-
bilistically, and quantify uncertainty through the conditional distributions. This
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transparency is particularly valuable for understanding model behavior, as ex-
plored in Paper IV.

The primary limitation remains computational scaling. Attention mecha-
nisms require O(N 2) operations where N is the sequence length, constraining
applicable grid sizes. For the 64×64 grids used in our experiments, this is
manageable, but scaling to millions of cells remains challenging. However, if
transformers can learn universal conditioning strategies that generalize across
different prior types, the investment in training could enable conditioning of
geological models that would otherwise require prohibitive custom MCMC
development. This potential for universal conditioning rather than raw compu-
tational speed represents the true promise of neural approaches for geostatistical
modeling.
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The evaluation of spatial categorical models presents a fundamental challenge:
how do we quantify the similarity between complex spatial patterns? Cate-
gorical fields require metrics that capture the essence of spatial structure—the
connectivity of sand bodies, the sinuosity of channels, or the clustering of
similar facies. The development of appropriate comparison metrics has paral-
leled the evolution of geostatistical modeling itself, progressing from simple
marginal statistics to sophisticated measures that attempt to capture perceptual
and geological realism.

Early geostatistical practice relied heavily on first-order statistics—volume
fractions or category proportions—to validate models (Journel, 1983). While
necessary for ensuring basic consistency, these marginal measures proved woe-
fully inadequate for distinguishing between radically different spatial arrange-
ments that happened to share similar proportions. This limitation drove the
adoption of two-point statistics, particularly the variogram, as the primary tool
for characterizing spatial structure (Matheron, 1973; Krige, 1951). The indica-
tor variogram for categorical data (Journel, 1983) enabled comparison of spatial
correlation structures, though it too failed to capture many important patterns.

The introduction of multiple-point statistics marked a recognition that ge-
ological patterns require higher-order characterization (Guardiano and Srivas-
tava, 1993). Methods for extracting and comparing pattern frequencies—whether
through template matching (Arpat and Caers, 2007), cluster analysis (Scheidt
and Caers, 2009), or wavelet decomposition (Gloaguen and Dimitrakopoulos,
2009)—attempted to capture the multi-scale, multi-point nature of geological
structures. Yet the curse of dimensionality limited these approaches to relatively
small templates or specific pattern types.

Recent years have seen a proliferation of feature-based and perceptual met-
rics borrowed from computer vision. The Structural Similarity Index (SSIM)
(Wang et al., 2003), originally designed for image quality assessment, found ap-
plications in comparing geological realizations. Connectivity metrics (Renard
and Allard, 2013) targeted specific aspects of geological importance. Mean-
while, the machine learning community contributed learned metrics based on
deep feature extraction (Mosser et al., 2017), promising more holistic compar-
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isons aligned with human perception.
This chapter reviews the hierarchy of image comparison methods avail-

able for spatial categorical fields, examining their strengths, limitations, and
appropriate domains of application. Section 4.1 addresses first-order statistics
and their fundamental limitations. Section 4.2 explores second-order meth-
ods, particularly variogram-based approaches. Section 4.3 examines higher-
order statistics and pattern-based metrics. Section 4.4 discusses composite and
feature-based measures that attempt to provide more complete characteriza-
tions. Rather than seeking a single "best" metric, we argue for using multiple
complementary measures that together span the space of relevant structural
properties.

4.1 First-Order Statistics

First-order statistics summarize the marginal distribution of pixel values with-
out considering spatial relationships. For a spatial categorical field x = [x1, ..., xN ]T

with xi ∈ {1,2, ...,C }, the most fundamental measures are the category propor-
tions:

pk = 1

N

N∑
i=1
I(xi = k), (4.1.1)

where I(·) is the indicator function. For a binary field (C = 2) this reduces to the
mean µ= p2, because the two proportions must sum to 1. The variance

σ2 = µ (1−µ),

is functionally determined by µ and therefore provides no additional infor-
mation. For images with multiple categories, mean and variance of category
indices are often not meaningful, and the full proportion vector p = [p1, ..., pC ]
should be used instead.

Figure 4.1 illustrates the fundamental limitation of first-order statistics
through three different spatial models: a TGRF, a MRF, and a fluvial MPS. The
TGRF and MRF have nearly identical first-order statistics (µ = 0.41 vs 0.43,
σ2 = 0.24 vs 0.25) yet exhibit distinctly different spatial structures—the TGRF
shows smooth, blob-like patterns with irregular boundaries, while the MRF
displays more blocky, regular structures. This demonstrates that first-order
statistics cannot distinguish between fundamentally different spatial organiza-
tions. The fluvial MPS, with its characteristic channel features, has noticeably
different first-order statistics (µ = 0.25, σ2 = 0.19), yet even knowing these
values tells us nothing about the elongated, connected channel structures that
define this realization. Whether the first-order statistics are similar or differ-
ent, they fail to capture the spatial patterns that often matter most in applica-
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tions—connectivity, object shapes, and correlation structures remain invisible
to these marginal measures.

Figure 4.1: Three different spatial models with similar first-order statistics. Each
realization is shown in binary form with its mean volume fraction (µ) and variance
(σ2 = µ(1−µ)). Despite similar marginal distributions, the spatial patterns differ dra-
matically.

When comparing two categorical fields, the Mean Squared Error (MSE)
provides a pixel-wise measure of difference:

MSE(x,y) = 1

N

N∑
i=1

(xi − yi )2. (4.1.2)

For binary fields where xi , yi ∈ {0,1}, this simplifies to the proportion of
mismatched pixels:

MSEbinary(x,y) = 1

N

N∑
i=1
I(xi ̸= yi ). (4.1.3)

For general categorical data where category labels are arbitrary, treating
them as numerical values in MSE calculations can be misleading. A more
appropriate measure is the categorical MSE:

MSEcategorical(x,y) = 1

N

N∑
i=1

C∑
k=1

(I(xi = k)− I(yi = k))2. (4.1.4)

This expands the comparison to indicator functions for each category, avoid-
ing arbitrary numerical assignments. For normalized comparisons between dif-
ferent image pairs, the MSE is often reported as a percentage of the maximum
possible error, which for categorical data equals 2 (when all pixels differ).

Another useful measure for comparing categorical distributions is the Jensen-
Shannon Divergence (JSD) (Lin, 1991), which provides a symmetric measure
of similarity between two probability distributions:

JSD(p,q) = 1

2
DK L(p||m)+ 1

2
DK L(q||m), (4.1.5)
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where m = 1
2 (p+q) is the average distribution and DK L is the Kullback-Leibler

divergence. Unlike MSE, JSD is bounded between 0 and 1 and provides a true
metric for probability distributions (Lin, 1991).

While MSE provides a quantitative measure of pixel-wise differences, it
shares the fundamental limitation of all first-order statistics: it cannot distin-
guish between images with different spatial structures but similar pixel distribu-
tions. A random permutation of an image will have high MSE compared to the
original, even though both share identical statistical properties. This limitation
motivates higher-order approaches that consider spatial relationships (Moran,
1950; Leuangthong et al., 2004).

4.2 Second-Order Statistics

Many spatial priors, most notably GRFs and TGRFs, are completely specified
by their mean and covariance and are therefore second-order models. Second-
order statistics capture pairwise spatial relationships between pixels. In geo-
statistics, the variogram is the primary tool for characterizing spatial correla-
tion:

γ(h) = 1

2|N (h)|
∑

(i , j )∈N (h)
|xi −x j |2, (4.2.1)

where N (h) is the set of pixel pairs separated by lag vector |h], and |N (h)| is
the number of such pairs. For categorical data, the indicator variogram is often
used, defined as γk (h) = 1

2|N (h)|
∑

(i , j )∈N (h) |I(xi = k)− I(x j = k)|2.
While the variogram is the traditional geostatistical tool, the full covariance

matrix provides an alternative representation of second-order spatial relation-
ships. For a spatial field with locations s1, ...,sN , the covariance matrix Σ has
entries:

Σi j =Cov(x(si ), x(s j )). (4.2.2)

The variogram and covariance are intrinsically linked through the relationship:

γ(h) =Σ(0)−Σ(h), (4.2.3)

where Σ(0) is the variance and Σ(h) is the covariance at lag |h|. This connection
means that stationary fields with known variance can be fully characterized by
either representation.

Figure 4.2 shows the isotropic empirical variograms for our three example
realizations. The fluvial MPS (red) exhibits rapid decay, reflecting its narrow
channel widths—pixels become decorrelated over short distances due to the
alternating channel and background structure. In contrast, the TGRF (blue)
and MRF (green) share more closely two-point correlations, with slower decay
indicating larger-scale spatial structures. This demonstrates both the power and
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limitation of second-order statistics: while they successfully discriminate the
channelized model from the others, they cannot distinguish between the TGRF
and MRF very well despite their visually distinct patterns.

Figure 4.2: Isotropic empirical variograms of the three realizations from Figure 4.1.
TGRF (blue), MRF (green), and fluvial MPS (red).

Comparing variograms between images can be done through the sum of
squared differences across all lag distances: Dvar(x,y) = ∑

h |γx(h)−γy(h)|2.
While variograms capture important spatial structure and are widely used in
geostatistical applications, they cannot distinguish between patterns that differ
in their higher-order properties. For instance, a checkerboard pattern, randomly
placed squares of the same size, and certain arrangements of stripes can all pro-
duce identical variograms despite their vastly different visual appearance and
connectivity properties. This limitation becomes particularly important when
dealing with complex geological structures that require higher-order statistics
to characterize adequately (Honarkhah and Caers, 2010; Boisvert et al., 2010;
Tan et al., 2014).

4.3 Higher-Order Statistics

To capture more complex spatial patterns, higher-order statistics examine con-
figurations of multiple pixels simultaneously. The most common approach uses
template scanning with n-point histograms, where a template T defines a local
neighborhood configuration, typically the 3×3 or 5×5 region around a central
pixel.

By scanning the entire image, we count occurrences of specific patterns:

fT (p) = 1

NT

∑
i∈IT

I(xTi = p), (4.3.1)

where IT is the set of all valid template center locations (i.e., locations where
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the template fits entirely within the image), xTi is the configuration at location i ,
p is a specific pattern, and NT = |IT | is the total number of template locations.

The computational challenge is severe: for a 3×3 binary template, there
are 29 = 512 possible patterns. Figure 4.3 shows the relative frequencies of
the twenty most common patterns for each of our three example realizations.
The pattern indices (P0, P1, ...) correspond to the 512 possible binary con-
figurations, sorted in descending order of probability independently for each
image—meaning P0 represents the most frequent pattern in each realization,
but these may be different actual configurations.

The pattern distributions reveal structural differences invisible to lower-
order statistics. Both the TGRF and MRF concentrate their probability mass
on blob-like, isotropic patterns—configurations where pixels of the same value
cluster together without preferential direction. In stark contrast, the fluvial
MPS favors elongated templates aligned with channel directions, reflecting the
anisotropic nature of channel systems. These differences in local pattern spec-
tra expose the higher-order structural contrasts that distinguish these models,
demonstrating why variogram-based approaches fail to differentiate between
TGRF and MRF despite their distinct visual characteristics.

Figure 4.3: Relative frequency of the twenty most common 3×3 binary templates in
each realization. Pattern indices are sorted independently for each image in descending
order of frequency.

Beyond template-based approaches, other higher-order statistics include
third-order spatial cumulants, which capture three-point interactions and can re-
veal asymmetries in spatial patterns invisible to second-order methods (Mustapha
and Dimitrakopoulos, 2010). These statistics are particularly valuable for dis-
tinguishing between processes that generate similar two-point correlations but
differ in their higher-order spatial relationships.

For larger templates or multi-category data, the pattern space becomes in-
tractable. This has motivated several dimensionality reduction approaches,
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including pattern clustering using techniques like multi-dimensional scaling or
hierarchical clustering to group similar patterns, adaptive templates that select
template size based on local entropy or information content, and filter banks
that apply predefined filters such as Gabor or wavelets to extract specific fea-
tures. Despite these advances, template-based methods remain computationally
intensive and can be difficult to interpret, particularly when dealing with large-
scale structures that extend beyond the template size (Boisvert et al., 2010;
Mariethoz and Caers, 2014; Tahmasebi, 2018). No low-dimensional statistic
can represent all information in an image class; the sheer diversity of valid
realizations precludes such compression. In practice the goal is a useful rather
than complete summary.

4.4 Feature Summary Statistics

Modern approaches to image comparison often combine multiple statistics
into composite metrics that attempt to capture perceptual or structural simi-
larity. While these methods recognize that no single statistic can adequately
characterize the complexity of spatial categorical fields, they also represent a
fundamental trade-off: condensing multidimensional information into scalar
values inevitably discards potentially important distinctions. This dimensional-
ity reduction can be viewed both positively as providing interpretable summary
measures and critically, as oversimplifying complex spatial relationships that
might be better represented by multiple complementary statistics.

The Structural Similarity Index (SSIM) (Wang et al., 2003) represents one
of the most successful composite metrics, combining luminance, contrast, and
structure comparisons:

SSIM(x,y) = (2µxµy + c1)(2σxy + c2)

(µ2
x +µ2

y + c1)(σ2
x +σ2

y + c2)
, (4.4.1)

where µx ,µy is the mean pixel intensity of image x and y respectively, σxy is
the covariance between images, and c1,c2 are stability constants.

Originally designed for continuous-valued images in computer vision ap-
plications, SSIM has gained widespread adoption due to its alignment with
human perceptual judgments. Designed for pixel-level correspondence in nat-
ural images, SSIM struggles when absolute location is irrelevant but internal
structure matters, for example recognising a cat regardless of where it appears
in the frame, or identifying channelised facies in geology. Its lack of rotational
and translational invariance, together with the requirement that images share
the same resolution, make SSIM ill-suited for many categorical tasks (Brunet
et al., 2012; Sampat et al., 2009).
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Recognizing these limitations, numerous variants have been proposed. Multi-
Scale SSIM (MS-SSIM) (Wang et al., 2003) addresses the single-scale limi-
tation by computing SSIM at multiple resolutions and combining the results,
providing better alignment with human perception across different viewing dis-
tances. Complex Wavelet SSIM (CW-SSIM) (Sampat et al., 2009) achieves
limited translation invariance through complex wavelet transforms, making it
more robust to small spatial shifts.

Despite these improvements, fundamental challenges remain. All SSIM-
based metrics assume pixel-wise correspondence and struggle with non-aligned
comparisons. For geological applications where patterns matter more than abso-
lute positions—such as comparing channel systems or facies distributions—these
limitations motivate alternative approaches that focus on structural properties
rather than pixel-level similarity. This recognition has driven the develop-
ment of distribution-based metrics, morphological measures, and the resolution-
invariant approaches explored in Paper V of this thesis.
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Summary of Contributions

The PhD work have resulted in five papers that are summarized next. In ad-
dition to this, contributions have been presented at the following international
conferences:

• IAMG 2022, Nancy, France

• IAMG 2023, Trondheim, Norway

• Petroleum Geostatistics 2023, Porto, Portugal

• Geostats 2024, Azores, Portugal

There have further been seminar presentations both at NTNU and during my
6-month visit at UT Austin.

Implementation and data science are also important elements of 21st cen-
tury statistics, and contributions in this regard are posted on repositories on
GitHub: https://github.com/OscarOvanger.
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Summary of Contributions

5.1 Paper 1: Addressing Configuration Uncertainty in
Well Conditioning for a Rule-Based Model

Authors: Oscar Ovanger, Jo Eidsvik, Jacob Skauvold, Ragnar Hauge, Ingrid
Aarnes
Published in: Mathematical Geosciences (2024) 56:1763–1788
DOI: 10.1007/s11004-024-10144-7

Motivation

Non-vertical wells often intersect the same bedset more than once, so the se-
quence of bedsets recorded in the log is ambiguous. Treating that sequence,
called the well configuration, as fixed can underestimate uncertainty. The pa-
per shows how to model configuration ambiguity explicitly within a simple
shore-face bedset model for categorical facies variables.

Approach

Bedsets are stacked sequentially and controlled by progradation and aggrada-
tion parameters. For any set of well picks the algorithm lists all admissible
configurations, evaluates a likelihood that mixes equality (intersection) and
inequality (interval) constraints, and applies a Laplace approximation for the
continuous parameters together with Monte Carlo sampling over configurations.
Conditional realisations of bedsets and their facies configurations are obtained
by averaging over configurations weighted by their posterior probability.

Contributions

The study (i) formulates a probabilistic model that separates continuous geol-
ogy parameters from discrete configurations, (ii) derives a closed-form mixed-
constraint likelihood that can be computed bedset by bedset, (iii) introduces
a Laplace–Monte Carlo routine that gives configuration probabilities without
exhaustive sampling, and (iv) provides reference results that can be used to test
future conditioning algorithms.

Findings

In a synthetic three-bedset example the method recovers the true configura-
tion distribution; the most likely path appears about 56% of the time, and low-
probability paths are still represented. Ignoring configuration uncertainty makes
bedset-boundary variance and well-length statistics too narrow, which could
bias flow predictions.
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5.1 Paper 1: Addressing Configuration Uncertainty in Well Conditioning for a Rule-Based Model

Future work

Extending the approach to many bedsets, multiple wells and full 3-D grids
will need path-pruning or heuristic search. Adding erosion, pinch-out and vari-
able shoreline trajectories would improve realism. Coupling the configuration
engine with downstream facies or flow simulators is a natural next step.
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5.2 Paper 2: Latent Diffusion Model for Conditional
Reservoir Facies Generation

Authors: Daesoo Lee, Oscar Ovanger, Jo Eidsvik, Erlend Aune, Jacob Skau-
vold, Ragnar Hauge
Published in: Computers & Geosciences (2025)
DOI: 10.1016/j.cageo.2024.105750

Motivation

Generative adversarial networks have been used for facies modelling, yet they
often struggle with stable training and accurate honouring of well data. Dif-
fusion models have shown reliable synthesis in computer vision, so we test
whether a LDM can improve conditioning accuracy for facies grids.

Approach

The study trains a two-stage LDM on 5 000 synthetic 2-D facies images of size
128×128. Stage 1 learns an encoder–decoder that compresses one-hot facies
grids to a latent space. Stage 2 trains a denoising network that maps latent
noise to conditional samples. Well observations are injected through a cross-
attention layer, and an extra loss term penalises any change to observed cells.
A conditional GAN with the same dataset and conditioning scheme serves as
baseline.

Contributions

The study introduces a diffusion-based workflow for conditional facies gen-
eration. It adds a simple preservation loss that directly targets conditioning
accuracy. Additionally, it provides an open baseline comparison against a re-
implemented conditional GAN.

Findings

The LDM keeps more than 99.9% of conditioning cells intact, while the GAN
misses about ten percent. First- and second-order statistics of the diffusion
samples match those of the training set, and training in latent space fits on a
single GPU for the grid size tested.

Future work

The current test case is limited to 2-D shoreline facies with a single grid res-
olution. Next steps include extending the method to 3-D models, larger grids
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and more varied conditioning patterns, as well as evaluating flow-dependent
metrics.
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5.3 Paper 3: A Statistical Study of Latent Diffusion
Models for Geological Facies Modeling

Authors: Oscar Ovanger, Daesoo Lee, Jo Eidsvik, Ragnar Hauge, Jacob Skau-
vold, Erlend Aune
Published in: Mathematical Geosciences (2025)
DOI: 10.1007/s11004-025-10178-5

Motivation

LDMs can generate realistic facies images, yet little is known about how their
sample distribution compares with traditional geostatistical priors. This study
benchmarks an LDM against a TGRF reference, moving the evaluation beyond
visual inspection to first-, second- and higher-order statistics.

Approach

The LDM is trained on 5000 synthetic 128×128 facies grids produced by a
TGRF. Two data sets are used: (i) a shoreface case with a vertical trend and
one well column of conditioning data; (ii) a laterally heterogeneous case with-
out trend, generated with three different covariance kernels and forty random
conditioning points. For each case the study draws 1 000 unconditional and
conditional samples from the LDM and from the exact TGRF posterior. Metrics
include cell-wise probabilities, volume fractions, Jensen–Shannon divergence,
transiograms, sub-grid pattern counts and third-order cumulants.

Contributions

The study provides a reproducible multi-metric framework for testing genera-
tive models of categorical geology. It quantifies how an LDM trained on TGRF
data departs from the reference in both unconditional and conditional settings.
The work highlights the role of training data complexity and conditioning pat-
tern in model performance.

Findings

In the shoreface case the LDM reproduces mean trends and transiograms but
narrows volume-fraction variance and slightly underrepresents rare sub-grid
patterns. Conditional shoreface samples fail to honour one or two well cells in
6% of realisations. In the laterally heterogeneous case the LDM overestimates
the middle facies in the Matérn experiment and misses at least one condition-
ing point in 85% of samples. Third-order cumulants reveal larger spread than
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TGRF for exponential covariance but smaller for Matérn, indicating sensitivity
to spatial smoothness.

Future work

Improving data preservation for scattered observations, extending the method
to 3-D grids and larger images, and mitigating variance loss caused by latent
compression are identified as next steps. The benchmark code and data sets
enable direct comparison for future architectures.
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5.4 Paper 4: Statistical Properties of Binary-Image Pos-
terior Vision Transformer Samples

Authors: Oscar Ovanger, Jo Eidsvik, Ragnar Hauge, Jacob Skauvold
To be submitted

Motivation

Exact sampling for categorical Markov-random-field posteriors is computa-
tionally expensive. ViTs offer fast autoregressive generation and an explicit
likelihood, but their statistical fidelity for conditional sampling is unknown.
The paper tests how well a ViT can reproduce the posterior of a binary MRF
conditioned on sparse observations.

Approach

A ViT with two encoder layers is trained by masked-token reconstruction on 5
462-token representations of 64×64 binary images drawn from an MRF. Condi-
tioning pixels are handled by logit truncation; two patch-fill orders (Manhattan
and inverse Manhattan) and two temperatures (τ= 1.0,0.9) are compared. For
each variant the study generates one thousand conditional images and evalu-
ates them against exact Variable Elimination Algorithm (VEA) samples using
log-likelihoods, Jensen–Shannon divergence, PointSSIM, transiograms and
third-order cumulants.

Contributions

The study introduces a ViT workflow for flexible conditional sampling with
exact likelihood evaluation. It provides a multi-metric benchmark that pairs
ViT outputs with ground-truth VEA realisations. The work diagnoses how
sampling order and temperature affect marginal probabilities, correlations and
higher-order structure.

Findings

ViT samples honour all conditioning pixels and capture large-scale patterns,
yielding PointSSIM scores close to VEA. They are shifted toward lower MRF
log-likelihoods and show a bias for the white class, traced to token-level prob-
ability miscalibration. Covariance analysis reveals over-extended correlations
near observations and undersmoothing elsewhere; temperature sharpening al-
leviates one issue while worsening the other. Third-order cumulants are near
zero, signalling loss of multi-pixel interactions present in the exact posterior.
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Future work

Reducing token-level bias, exploring smaller tokens or hybrid convolutional
neural network–ViT encoders, and extending the method to larger grids and
multi-class facies are suggested next steps. A key open question is whether
modified training objectives can balance conditioning accuracy with correct
spatial correlations.
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5.5 Paper 5: PointSSIM – A Low-Dimensional, Resolution-
Invariant Image Metric

Authors: Oscar Ovanger, Ragnar Hauge, Jacob Skauvold, Michael J. Pyrcz, Jo
Eidsvik
Posted on: arXiv (2025)1

Under review for: IEEE Transactions on Image Processing

Motivation

Pixel-wise metrics such as MSE and SSIM depend on identical image resolution
and exact alignment, which limits their use for geological patterns that appear
at many scales. The paper introduces PointSSIM, a metric designed to compare
binary images of different sizes and orientations by focusing on structural rather
than pixel correspondence.

Approach

Each image is converted to a marked point process. Anchor points are found
as locally adaptive maxima of the minimal distance transform; their positions,
radii and object labels form a compact representation. Four rotation- and scale-
insensitive summary measures—anchor count, area coverage, anchor points per
object and spatial variance irregularity—are computed, and a simple distance
in this four-dimensional space defines the similarity score.

Contributions

The study defines a resolution-invariant structural metric for binary images
grounded in mathematical morphology. It presents an efficient algorithm that
reduces an nr nc-pixel grid to a handful of summary values, making large-
scale comparisons fast. The work publishes code and five benchmark data sets
covering geological and synthetic patterns.

Findings

PointSSIM separates image classes more clearly than MSE, SSIM and MS-
SSIM and keeps within-class scores close to one. Tests on the same facies
patterns rendered at 2562, 5122 and 10242 show minimal drift, confirming prac-
tical resolution invariance. The metric is most reliable when images contain
enough anchor points; very large, homogeneous objects can reduce its sensitiv-
ity.

1https://arxiv.org/abs/2501.01234
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Future work

Planned extensions include multi-facies and greyscale support, alternative point
marks that capture curvature or texture, and the use of PointSSIM as a structural
loss term when training generative models.
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Conclusion and Discussion

This thesis has explored Bayesian conditioning for spatial categorical models
through five papers spanning classical geostatistics and modern deep learning.
Each contribution sheds light on different facets of this complex problem while
revealing both progress made and fundamental limitations that remain.

Paper I highlights the importance of configuration ambiguity in well con-
ditioning—a phenomenon where multiple geological interpretations honor the
same well data. By explicitly modeling which observations belong to which
geological bodies, the simulation-based approach exposes how such ambiguity
can dominate posterior uncertainty in reservoir characterization.

Paper III systematically evaluates the LDM introduced in Paper II against
its geostatistical training data. The results show that, although the model
reproduces large-scale patterns and visual characteristics, it underestimates
variability and remains sensitive to training-data composition. Architectural
modifications tailored to geology (Paper II) markedly improve preservation of
conditioning data, underscoring the value of domain-specific model design.

Paper IV and V emphasise that quantitative evaluation must complement
visual inspection. PointSSIM introduces a resolution-invariant similarity metric,
while the analysis of ViTs uncovers systematic biases in their generated patterns.
These studies motivate a broader discussion of image comparison metrics for
geological data—a theme that cuts across the entire thesis.

On the limits of image comparison metrics. Complex spatial structures can-
not be condensed into a single scalar without losing information. Connectivity,
morphology, and scale-dependent features matter differently across tasks such
as flow simulation, well-placement optimisation, or facies mapping. Hence,
no universal metric will suffice. Instead, effective assessment requires suites
of complementary metrics that jointly span the structural attributes of inter-
est: first-order proportions for basic consistency, variograms or connectivity
functions for spatial correlation, higher-order statistics for morphology, and
domain-specific measures linked to engineering objectives.

Most established metrics were designed for binary images and need careful
adaptation for multi-facies or volumetric data. Computational burdens grow
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rapidly in three dimensions, where feature extraction and comparison become
far costlier. Future research should therefore pursue (i) metric collections that
cover distinct aspects of structure, (ii) principled ways to select the most rel-
evant subset for a given application, and (iii) efficient algorithms to compute
these metrics on large 3D grids. Integrating such tools with generative models,
as demonstrated throughout this thesis, is essential for rigorous validation of
Bayesian conditioning workflows.

Trade-offs among modelling paradigms. Throughout the thesis we observe
a consistent triad—theoretical guarantees, computational efficiency, and flex-
ibility. MCMC methods deliver theoretical rigour and flexibility at high com-
putational cost; explicit geostatistical priors offer clarity and efficiency but
limited flexibility; neural networks provide flexibility and speed yet sacrifice
strong guarantees. No approach simultaneously achieves all three, mandating
application-driven method selection.

The contrast between implicit and explicit representations further clarifies
these trade-offs. Classical models explicitly encode spatial structure via math-
ematical forms, whereas neural networks learn implicit representations from
data. Our experiments show that when trained on samples from explicit priors,
neural networks struggle to reproduce the full variability of their training sets,
suggesting challenges in learning higher-order statistics.

Across all approaches, the core difficulty remains: incorporating sparse
observations while preserving realistic spatial patterns. Whether manifesting
as configuration uncertainty, data preservation errors, or distributional biases,
the tension between honouring data and retaining prior statistics persists.

Practical implications. For practitioners, this work underscores the need for
application-specific method selection and comprehensive validation. When
rigorous uncertainty quantification is paramount, MCMC remains preferable
despite its cost. Where flexibility or non-standard constraints dominate, neural
methods hold promise, but the systematic biases revealed here demonstrate that
visual realism alone is insufficient—metric-based evaluation is indispensable.

Future directions. Several grand challenges extend beyond this thesis. Re-
alistic applications demand 3D models with millions of cells, straining both
classical and neural approaches. Physical constraints should ideally regularise
categorical models but are difficult to encode. Ensuring ensembles accurately
reflect posterior uncertainty—not just plausibility—remains an open question.

Hybrid methods combining MCMC rigour with neural speed (e.g., neural
proposal distributions) offer a promising path forward. Developing standard-
ised benchmarks and evaluation protocols, including the multi-metric suites
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proposed above, would enable fair comparison across methods. Finally, moving
from purely statistical to causal models of geological processes may enhance
both interpretability and fidelity.

In summary, the intersection of classical geostatistics and modern ma-
chine learning presents rich opportunities tempered by significant challenges.
Progress will require integrating statistical fundamentals, domain expertise, and
computational innovation. While this thesis clarifies some strengths and weak-
nesses of existing approaches, many questions remain—chief among them, how
to better preserve statistical properties in implicit models and how to devise con-
ditioning methods that honour both data and prior knowledge. Addressing these
questions will demand continued cross-disciplinary collaboration to advance
our capacity to model the subsurface with confidence.
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Abstract
Rule-based reservoir models incorporate rules that mimic actual sediment deposition
processes for accurate representation of geological patterns of sediment accumula-
tion. Bayesian methods combine rule-based reservoir modelling and well data, with
geometry and placement rules as part of the prior and well data accounted for by
the likelihood. The focus here is on a shallow marine shoreface geometry of ordered
sedimentary packages called bedsets. Shoreline advance and sediment build-up are
described through progradation and aggradation parameters linked to individual bed-
set objects. Conditioning on data from non-vertical wells is studied. The emphasis
is on the role of ‘configurations’—the order and arrangement of bedsets as observed
within well intersections in establishing the coupling between well observations and
modelled objects. A conditioning algorithm is presented that explicitly integrates
uncertainty about configurations for observed intersections between the well and the
bedset surfaces. As data volumes increase and model complexity grows, the proposed
conditioning method eventually becomes computationally infeasible. It has signifi-
cant potential, however, to support the development of more complex models and
conditioning methods by serving as a reference for consistency in conditioning.

Keywords Geomodelling · Object model · Well conditioning · Reservoir model ·
Configuration · Rule-based model

1 Introduction

In a sedimentary system, a geobody corresponds to a single depositional event. In a
wave-dominated shallow marine environment, this is usually represented by a bedset.
A probabilistic model for bedsets involves the shapes and dimensions of these geo-
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bodies through parameters with a specified probability distribution. The initial model
is updated when incorporating well data, using Bayes’ theorem.

Geobodies can span extensive areas, and a single geobody may appear in multiple
well observations, especially for non-vertical wells. Therefore, to determine from
well logs whether two observations come from the same geobody, one must consider
various configurations, or ways in which bodies and observations could be linked.
This is a hard problem in geomodelling (see Fig. 1).

Deutsch and Wang (1996) argue that this problem is so difficult that approaches
based on rejection sampling are needed to get it right. However, Hauge et al. (2007)
show that a carefully craftedMarkov chainMonteCarlo algorithmcan provide samples
that are a good approximation to the true posterior, including for properties of objects
that intersect one or more wells.

To test the quality of the sampling, Hauge et al. (2007) use the principle of double
expectation. The key insight is that if realisations are generated from a prior model
and synthetic data are generated from the realisations, before finally a conditional
realisation is generated given these data, then any statistical property should follow
the same distribution whether it is computed from the prior samples or from the
conditional samples. A model that satisfies this criterion can be used to sample out
configuration probabilities in a manner comparable to the well correlation analysis of
Bertoncello et al. (2013) or Wingate et al. (2016). Wang et al. (2018) suggest another
optimisation-based approach for conditioning in object-based models.

This article focuses on directly computing the probability of a given configuration
of geobodies in well observations. Although an exact answer cannot be computed, the
proposed approximate method performs well in a double expectation test. As is shown
in Sect. 4, conditioning becomes relatively easy once a distribution over configurations
is in place. Rather than using a complex conditioning scheme to sample out config-
uration probabilities, this approach builds on complex computation of configuration
probabilities to create a direct conditioning scheme.

Geobody modelling approaches can be divided into two main classes: conventional
object models and rule-based models. Object models were introduced by Bridge and
Leeder (1979), and have typically been used to model fluvial systems (Viseur et al.
1998; Holden et al. 1998; Keogh et al. 2007). Troncoso et al. (2022) study a sequential
object placing model with a particle filter solution for conditioning this kind of model.
In these object models, each geobody is modelled as more or less independent of the
others.

In rule-based models (Cojan et al. 2005; Pyrcz et al. 2015; Parquer et al. 2017;
Rongier et al. 2017), the geobodies respond to each other, typically through stacking
rules. These models are generally sequential, mimicking the depositional process by
adding geobodies in geological order.

Object-based models for facies in a stratigraphical stacking of beds have also been
considered. For example, Manzocchi andWalsh (2023) study analytic expressions for
proportions and amalgamation ratios of foreground and background facies. Studies
of sequence simulation and conditioning include the work of Allard et al. (2021)
who use Markov chain Monte Carlo to simulate latent Gaussian models of sequences
conditional on thicknesses in vertical well logs, and the surface-based geological
models of Titus et al. (2021), who train neural networks on geological model inputs
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and facies types along wells. Taking an approach based on the ensemble Kalman filter,
Skauvold andEidsvik (2018) updated geological processmodel realisations givenwell
log information in a sequential, bottom-up fashion.

Most work on well conditioning of geobody models, and in particular work that
considers the allocation of geobodies conditional on wells, has been done on object
models (Deutsch and Wang 1996; Seifert and Jensen 2000; Hauge et al. 2007, 2017).
Althoughwell conditioning of rule-basedmodels has received some attention (Berton-
cello et al. 2013; Wingate et al. 2016; Jo and Pyrcz 2020), no definitive conditioning
methodology has yet emerged. The model considered here is a simple rule-based bed-
set model. It will be demonstrated that configuration probabilities for this model can
be estimated, and that these resulting probabilities can be used to generate samples
from a distribution that closely approximates the true posterior distribution.

Section 2 describes the main components of the bedset model and completes the
well configuration concept with more detail. Section3 describes the statistical models
for bedsets and forwell data. In Sect. 4, the conditioning problem ismade precise. Then
an algorithm to estimate configuration probabilities is presented, and a conditioning
approach based on that algorithm is laid out. Section5 details a simulation study
that uses the algorithm. Section6 concludes the article by summarising findings and
pointing out possible directions for further research.

2 ProblemDescription

Bedsets are three-dimensional objects bounded above and below by surfaces. The top
of one bedset is the base of the next, and keeping track of one surface per bedset
is sufficient for a complete representation. In this work, all illustrations and simula-
tion experiments will be in two dimensions for simplicity. Considering the process
of stacking m bedset objects, initial bathymetry is defined by z0(x), for lateral coor-
dinate x in a domain D ⊂ R1. Bedset boundaries z1, ..., zm are placed above each
other sequentially, assuming no erosion. The geometry of the bedset system is mainly
controlled by how far the system builds out (progradation) and up (aggradation) with
the addition of each bedset. The pair of progradation and aggradation parameters of
the i th bedset is denoted by θ i . At a larger scale, a set of stacked bedsets bounded by
marine flooding surfaces is a parasequence (Catuneanu et al. 2009; Boggs 2014).

Data from a well, denoted by d, are collected at specific coordinates. A running
assumption here is that these data capture the transitions between different bedsets,
but the bedset indices of these transitions are not revealed and hence the bedset order
of the well is not known. If one assumes that bedset age increases monotonically with
depth everywhere, then a vertical well uniquely constrains the order of intersected
bedsets. However, if the well is not vertical, then the order is ambiguous even with
this assumption. The order is still the sequence of indices referring to the layers
(bedsets) visited along the well trajectory (in the ‘down’ direction), but this order
is not necessarily monotonic. This sequence of indices is here called a configuration
and denoted by c.

To clarify the concept of a well configuration in this context, consider a parabola-
shaped well (Fig. 1a) going through stratigraphic sequences. From the well data, three

123



1766 Mathematical Geosciences (2024) 56:1763–1788

Fig. 1 Example of two different well configurations c

Table 1 Main variables and their description

Variable Description

zi Elevation to top surface of i th bedset

z = (z1, . . . , zm ) Elevation to all bedset top surfaces

θ i Progradation and aggradation of i th bedset

θ = (θ1, . . . , θm ) Progradation and aggradation of all bedsets

d Well data of locations along well path and bedset intersections

c Configurations of bedsets along well path

flooding surfaces or abrupt changes in the subsurface are identified. Given a spe-
cific object-model, this indicates two transitions from one object to another. Notably,
this well information does not reveal the number of distinct objects visited or their
sequence. However, one can compile a list of objects that may have been visited by
the well. A configuration is one such list of object transitions. Figure1 shows two
distinct scenarios. In one, the parabola-shaped well has configuration c1 = [4, 3, 2, 1]
(Fig. 1b), while the configuration is c2 = [4, 3, 2, 3] in Fig. 1c. In the former sce-
nario, the well intersects with three objects, whereas it only intersects with two in the
latter. Often, in real-world situations, the flow between objects is limited, while the
flow within an object is efficient, given that the permeability within the object is high.
Under such conditions, the well in the first scenario would interact with more objects,
potentially optimising flows. Essentially, the well data alone do not reveal the config-
uration, yet predictions of surface depths and flow behaviour may depend sensitively
on it. Therefore, acknowledging the existence of multiple potential configurations and
exploring methods to model them can be crucial.

The notation is summarised in Table 1.
The statistical model for the bedset geometry is explained in Sect. 3.1, while the

configurations and well data models are described in Sect. 3.2. In Figs. 3, 9, 10 and 11
depth is used as the axis-label to represent the distance from the top surface of the
most elevated bedset to the bottom of the bathymetry. The depth-axis is normalised to
the range of 0 to 100.
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3 Statistical Model for Bedsets, Well Data, andWell Configurations

3.1 AModel of Bedsets

The focus of this paper is on a rule-based model (Pyrcz and Deutsch 2014; Jo and
Pyrcz 2020) for a wave-dominated shoreface environment (see e.g. Eide et al. 2014,
2015). In such systems, sediments originally supplied by rivers are reworked by waves
and distributed alongshore. The constant reworking gives rise to an upward-coarsening
grain size profile that follows wave-energy. On top is a sandy shoreface with excellent
reservoir properties. Below the fair-weather wavebase there is an offshore transition
zone which is an interbedding of mud and sand. Below the storm wavebase there is
only background sedimentation of offshore mud.

New bedsets are believed to form when gradual deposition is disturbed, such as
by an abrupt small-scale rise in relative sea level or a river avulsion. The boundary
surfaces that separate older bedsets from younger ones are the result of such sedi-
mentary supply interruptions. Graham et al. (2015a, b) show that low-permeability
layers between bedsets can significantly affect fluid flow in a reservoir, and that ade-
quate representation of this heterogeneity can be a key requirement for accurate flow
simulations.

Here, stacking behaviour within a single parasequence is considered. This system
follows well-understood rules, conveniently represented by a model that stacks bodies
outwards and upwards, where bedset objects represent deposition events. Here, the
modelling assumption is that bedsets can be recognised in the field and that they
have a meaningful modelling scale. Another assumption is that the bedset boundaries
follow the samemean shape. Figure3 illustrates multiple stacked bedsets building up a
parasequence. In addition to the bedset boundaries of main interest, the within-bedset
facies transitions from sand (ν = 1) to shale (ν = 2) are also illustrated in this display.

The geometry of new bedsets are mainly driven by the basal profile and the cumu-
lative aggradation αi and progradation πi parameters, i = 1, . . . ,m, which control
vertical and horizontal components of the shoreline position. Assuming no erosion,
these parameters are assumed to be positive. The entire parameter vector is denoted
by θ = (θ1, . . . , θm), where

θ i =
{

(logπi , logαi ), i = 1

(log(πi − πi−1), log(αi − αi−1)), i ≥ 2.
(1)

The incremental progradation and aggradation between two subsequent bedsets are
considered to be random variables with joint probability density function (PDF) p(θ i ),
i = 1, . . . ,m. Parameters for different layers are assumed to be independent, so
that p(θ) = ∏m

i=1 p(θ i ). To allow negative correlation between aggradation and
progradation, a common bivariate Gaussian model is used for each θ i

θ i =
[
log(πi − πi−1)

log(αi − αi−1)

]
∼ N

([
μπ

μα

]
,

[
σπ ρπα

ραπ σα

])
. (2)

123



1768 Mathematical Geosciences (2024) 56:1763–1788

A Markov assumption is applied for the bedset boundaries model

p(z|θ) =
m∏
i=1

p(zi |zi−1, θ i ). (3)

For the initial bathymetry, z0(x) = exp
(
− x−π0

ξ

)
, where ξ controls the slope of the

bathymetry and is set to 100 here. Using a sequential structure, and given αi and πi ,
the PDF of zi is represented by a Gaussian random field (GRF). The mean μi is a
function of θ i

μi = 1αi + exp

(
−x − 1πi

ξ

)
(4)

where 1 is a vector of ones acting on the aggradation αi and the progradation πi of
bedset i . The residual covariance matrix for each bedset boundary is denoted by Σ . It
is the same for each bedset.With theMarkovian structure, the conditional distributions
are

[zi |zi−1, θ i ] ∼ N (μi + TΣ−1(zi−1 − μi−1),Σ − TΣ−1T ). (5)

The inter-bedset covariance matrix T in (5) is calculated using an autocorrelation
parameter, |ρ| < 1, that measures how closely neighbouring bedset surfaces covary.
This parameter is then multiplied by the residual covariance matrix Σ .

Overall, the joint PDF p(z1, ..., zm |θ) is defined via a product sequence of PDFs
with one component per bedset. The marginal PDF of these bedset geometries are
obtained by integrating out the parameters

p(z) =
∫

p(z|θ)p(θ) dθ . (6)

Algorithm 1 lists the steps involved in producing a Monte Carlo (MC) sample from
this prior distribution. Previous research on structural models of horizons employ-
ing Gaussian random fields (GRFs) was conducted by Abrahamsen (1993) and Goff
(2000), in which horizons are sequentially sampled. Nonetheless, in these studies, the
configurations of observations for conditional simulations are predetermined.

Algorithm 1 Producing a prior sample of θ , z
1: procedure DrawPriorSample(μθ , Σθ , Σ, T ,m)
2: for i = 1 : m do
3: θ i ∼ N (μθ , Σθ )

4: zi ∼ N (μi + TΣ−1(zi−1 − μi−1), Σ − TΣ−1T )

5: end for
6: return {θ i , zi : i = 1, . . . ,m}
7: end procedure
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Fig. 2 A simplified figure of the set-up with the data nomenclature used throughout this work. zie is the part
of the bedset boundaries subject to inequality constraints. The purple segment is strictly above the well, and
the yellow part is strictly below the well. The blue crosses are where the well and the bedset boundaries
intersect and thus ze = de

Fig. 3 Vertical versus non-vertical well data. A well configuration is defined by the indices of bedset
transitions. This is straightforward for vertical wells. It becomes more involved for non-vertical wells

Bedsets can be subdivided into different architectural elements. As shown in Fig. 3,
each bedset can be split into an all-sand shoreface part and an offshore transition zone
part of interbedded sandstone and shale (Eide et al. 2014). Next, porosity, permeability,
and other properties can be filled in with the desired level of heterogeneity. These
downstream modelling steps are important and relevant, but the scope of this article
is limited to geometric modelling of bedset boundaries.

3.2 Well Data, Configurations, and Their Significance

Well configurations are defined by transitions between bedsets. In Fig. 3, a sequence
of bedsets is intersected by two vertical wells (left) and a non-vertical well (right).

The configuration of well data is c = [5, 4, 3, 2, 1] for the vertical case. The con-
figuration of well data in the non-vertical well is c = [6, 5, 4, 3, 2, 3, 4, 5, 6, 5]. Note
that there are eight bedsets in the figure. The coastal plain is not a bedset, thus it is not
a part of the configurations.

To simplify the presentation, this study focuses only on a single well. The well is
assumed to have known coordinates. Hence, the well configuration c is determined
by the bedset boundaries z. The probability density p(c|z) is then a Dirac δ-function.
The marginal probabilities p(c) can be approximated by sampling multiple times
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from p(z) and then counting the configurations. The MC sampling procedure for well
configuration distribution involves the steps listed in Algorithm 2. Here, nr denotes the
number ofMC samples. The probability of a particular configuration c is approximated
by the number of MC samples having that configuration, divided by nr . Parameters
σ 2
z , η represent variance and smoothness of the GRF.

Algorithm 2Monte Carlo approximation of the well configuration distribution.
1: procedure ApproximateConfigurationDistributionByMonteCarloSampling(nr )
2: initialise i ← 1,C ← ∅
3: while i < nr do
4: Sample θ1, ..., θm ∼ N (μθ , Σθ )

5: z1, ..., zm |θ ∼ N (μz(θ), Σz(σ
2
z , η, ρ))

6: Determine c based on how the bedsets intersect the well.
7: C ← C ∪ c
8: i ← i + 1
9: end while
10: end procedure

The set of possible well configurations depends on the number of bedsets in the
model and the number of observed bedset boundaries. As the well goes from one
bedset to another, the new bedset must be one of the neighbours of the previous
one. If the previous bedset happens to be the top or bottom bedset, then there is
only one bedset that can be entered. Possible well configurations for a given number
of observed bedset boundaries are illustrated in Fig. 4, where m represents the mth
bedset according to the model, counting from the bottom up. Every left-to-right path
is a possible configuration. For example, c = [m,m − 1,m − 2,m − 1,m,m − 1] is
one of the 10 possible configurations with six measurements.

The data d include well picks of bedset boundary surfaces, when the model is
known. Such well transition data could, for instance, be extracted from large changes
in the gamma-ray log or a related log of shale/sand proportions. Bubnova et al. (2020)
used clustering techniques of sand proportions data to detect sedimentary transitions
in log data. The bedset picks are here assumed to be measurements of the z-coordinate
of the bedset boundary at the (x, z)-locations where they are made. For vertical wells,
these observed intersection points are the only data constraints. A non-vertical well
imposes mixed constraints on the bedset boundary surfaces:

– Equality constraints: Observed intersections in a bedset layer i put equality con-
straints on the surface zi which must have specific values at these well locations,
denoted de.

– Inequality constraints: Well intervals that come before, between or after intersec-
tion point observations impose inequality constraints on the two adjacent bedset
surfaces. A well interval lying inside bedset i would act as an upper bound for
zi−1 and as a lower bound for zi . The upper and lower bounds are denoted du and
dl , respectively, and the notation d ie is used to represent the union of the upper
and lower bounds.
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Fig. 4 Possible configurations of layers observed in a well. Nodes are labelled with layer indices. Each
rightward transition from one column to the next represents an observed surface intersection of the well.
When passing an intersection point a well cannot stay in the same layer, but must move to a neighbouring
bedset. The indicated path through the lattice corresponds to the configuration c = [m − 2,m − 3,m −
2, . . . ,m]. Configurations can have any number of picks, including zero. In that case, it is identified by a
single index. The configuration still specifies which layer the well is in

Assuming ndi observations di of bedset boundary i , let H i ∈ Rndi ×nx , where nx
is the horizon grid size, be the design matrix that maps points from the geometric
model to the data space, that is, di = H i zi . This gives the following distribution of
the equality data

di |c, θ i ∼ N
(
H iμzi |zi−1

, H iΣ zi |zi−1H
T
i

)
, (7)

where μzi |zi−1
is the conditional mean given the previous surface in Eq. (5). Under

mixed-constraints, the likelihood function becomes

p(d|c, θ) = p(ze = de(c), d�(c) ≤ zie ≤ du(c)|c, θ), (8)

where ze and zie contain components of z that are subject to equality and inequality
constraints, respectively. The influence of the configuration enters through the vectors
d� and du of lower and upper bounds. Assimilating the mixed constraints sequentially,
starting with the equality constraints, Eq. (8) can be rewritten as

p(d|c, θ) = P(d�(c) ≤ zie ≤ du(c)|ze = de(c), c, θ)p(de(c)|c, θ)

= [
Fzie|ze=de(c),θ (du(c)) − Fzie|ze=de(c),θ (d�(c))

]
f (de(c)|θ , c),

(9)

where the latter is the PDF of the equality constraints while Fzie|ze=de(c),θ (zie) is the
multivariate cumulative distribution function (CDF) of zie after conditioning the GRF
on the equality constraints. If the elements of zie given ze = de(c) and θ are weakly
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correlated, they can be treated as independent, giving the element-wise factorisation

p(d|c, θ) = f (de(c)|θ , c)
∏
z∈zie

[
Fz|ze=de(c),θ (du(c)) − Fz|ze=de(c),θ (d�(c))

]
, (10)

where d� and du are the elements of d� and du that go along with each z ∈ zie.
When evaluating Eq. (10), it is further useful to consider one surface at a time,

and one inequality observation at a time. For a given surface, each element of zie will
be bounded above or below, but never both. When there is only a lower bound, let
du → ∞. The first CDF term then becomes equal to 1. Similarly, when there is only an
upper bound, let d� → −∞. The second CDF term is then zero. It is also convenient
to let L and U stand for the two disjoint lower-bounded and upper-bounded subsets
of zie. When all this is put together, Eq. (10) becomes

p(d|c, θ) = f (de(c)|θ , c)
∏
z∈L

[
1 − Fz|ze=de(c),θ (d�(c))

] ∏
z∈U

Fz|ze=de(c),θ (du(c)).

(11)

Algorithm 3 lists the steps in the procedure for evaluating the likelihood p(d|θ , c).
First the log-likelihood variable is initialised with a value of zero. Then, in lines 2, 3,
and 4, relevant indices are identified. It is only necessary to consider surfaces that are
adjacent to at least one point on the well trajectory. In line 5, it loops over all layers
that could potentially be updated. For each surface, a decision is made concerning the
kind of constraint to apply. There are always inequality constraints, and if the current
layer is intersected by the well, then there are also equality constraints. In the case of
pure inequality constraints (lines 8 and 9), the cumulative log-likelihood variable is
updated by evaluating the appropriate CDF (see Eq.11). In the mixed constraints case
(lines 12–15), the equality constraints are considered first, as the surface is conditioned
to them. In this case, both the PDF and CDF of the surface distribution need to be
evaluated to update the log-likelihood with the information from all constraints.

Algorithm 3 Evaluating p(d|c, θ)

1: procedure EvaluateLikelihood(d, c, θ )
2: Initialise log p = 0
3: kstart ← min(c) − 1: Index of last surface below well.
4: kend ← max(c) + 1: Index of first surface above well.
5: for k = kstart : kend do
6: log p ← log p + log p(dk |c, θ)

7: end for
8: return log p
9: end procedure
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4 Conditioning Problem

The goal is to condition (i) the placement of each bedset boundary z, (ii) the model
parameters θ , and (iii) the configuration c, given the observations d made in the wells.
By using different variants of Bayes’ rule, components of the full posterior models are
used to form an approximate solution. First, the full posterior PDF of the geometry z
is studied, next the PDF p(θ |c, d) of the model parameters is approximated, and then
the posterior distribution for the well configuration c is assessed. Finally, the pieces
are combined in a compact algorithm.

4.1 Conditioning of Geometries

The density p(z|θ, c, d) is multivariate Gaussian, and by standard expressions for the
conditionalmultivariateGaussian distribution of equation (5), themean and covariance
of bedset boundaries can be obtained (see e.g. Chapter 4 in Cressie andWikle (2015)).

The idea is to let the data constrain both c and θ , and write the posterior distribution
of z as

p(z|d) =
∑
c

∫
p(z|θ, c, d)p(θ |c, d)p(c|d) dθ . (12)

4.2 Parameter Estimation

The posterior distribution of model parameters θ can be assessed from well observa-
tions of bedsets. This involves finding the following PDF

p(θ |c, d) = p(d|c, θ)p(c, θ)

p(c, d)
. (13)

This posterior has no closed form expression, but a reasonable substitute is a local
Gaussian approximation (GA) such that θ |c, d ≈ N (θMAP, Σ̂θMAP), where

θ̂MAP = argmin
θ

[− log p(θ |c, d)
]
,

and

Σ̂θMAP =
[
−∇2 log p(θ̂MAP|c, d)

]−1
.

(14)

This is a normal distribution fitted to the mode of the log-posterior, and using the cur-
vature at this mode (negative Hessian of the log-posterior) as precision matrix (inverse
covariance matrix). This PDF is denoted by p̂GA(θ |c, d). In this approximation, an
assumption is that c and θ are independent a priori, so that p(c, θ) = p(c)p(θ). The
mode θ̂MAP in Eq. (14) is hence found byminimising the sum of the negative log-prior
for θ and the negative log-likelihood p(d|c, θ). The Nelder–Mead algorithm (see e.g.
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Fig. 5 Two realisations following parameters in Table 2 and simulation inAlgorithm 1. Here, c = [3, 2, 3] is
the most likely configuration given the parameters, and the realisation in Fig. 5a is the one that the posterior
parameters in Fig. 6 are conditioned on

Mogensen and Riseth 2018) is used to locate the mode. The Hessian is evaluated by
second-order central difference (Abramowitz 1972).

As an example of a typical approximation situation, conditioning results from one
synthetic well observation are presented next. The well observation is simulated by
creating a realisation following Algorithm 1 and extracting the well data. The reali-
sation is illustrated in Fig. 5a. Figure6 shows the negative log-prior, log-likelihood,
sum of log-prior and log-likelihood, and approximate log-posterior for log(π1) and
log(α1), the log-progradation and log-aggradation of the bottommost bedset. In each
case, the negative logarithm of the PDF or likelihood is shown, so that lower values
correspond to more likely outcomes. It is evident from the contour shapes of the differ-
ent functions, in particular the display in (c) versus the prior display in (a), that the data
provide more information about log(α1) than log(π1). The approximate log-posterior
presented in display (d) resembles the evaluation conducted in the sum of log-prior
and log-likelihood as shown in display (c). Given that the sum of the log-prior and
log-likelihood is not normalised, an expected outcome would be a separation by a
constant. This expectation aligns with observations indicating that the approximate
log-posterior is approximately half of the sum. Hence, the Gaussian assumption at the
mode fits rather well here.

4.3 ConditionalWell Configuration Distribution

The conditional distribution p(c|d) over possible well configurations can be repre-
sented via known or approximated conditional distributions. First, the PDF p(θ , c, d)

can be factorised in two different ways, namely

p(θ , c, d) = p(d|c, θ)p(c, θ) = p(θ |d, c)p(c|d)p(d). (15)

Solving for p(c|d) in this expression and using the approximation in Eq. (14) gives
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Fig. 6 Plot of distributions for parameters θ = [log(π1), log(α1)], where the data and configuration are
based on a simulation from Algorithm 1 with configuration c = [2, 1, 2, 3]

p(c|d) = p(d|θ , c)p(c, θ)

p(θ |c, d)p(d)
∝ p(d|θ , c)p(c, θ)

p(θ |c, d)

p̂(c|d) ≈ p(d|θ , c)p(c, θ)

p̂GA(θ |c, d)
,

(16)

where the latter equation constructs an approximation by plugging in the PDF of
the GA for θ in the denominator of the expression. Note that p(c, θ) = p(c|θ)p(θ)

here, and p(c|θ) is approximated by MC sampling from the prior model for bedset
boundaries. Evaluating Eq. (16) requires that a value of θ be chosen and inserted.
Even though the relation holds for any choice of θ , the relative error of the expression
is minimised by using the mode θ̂MAP. Equation (16) is a version of the Laplace’s
approximation (see e.g. Rue et al. 2009).

The procedure is summarised in Algorithm 4. To find the probability of each con-
figuration given the data, there is a loop over every configuration permitted by the data
(line 2 of Algorithm 4). The possible configurations depend on the number of bedsets
m and number of observations in the well, as shown in Fig. 4.
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Algorithm 4Well configuration probability approximation
1: procedure FindWellConfigurationProbabilities(C, d)
2: for c ∈ C do
3: Find θ̂MAP by maximising p(θ)p(d|c, θ)

4: Find p(c|θ̂MAP) = ∫
p(c, z|θ̂MAP) dz by Monte Carlo integration

5: Prepare Gaussian approximation p̂GA(θ |c, d)

6: Compute p̂(c|d) = [
p(d|θ , c)p(c, θ)/ p̂GA(θ |c, d)

]
θ=θMAP

7: end for
8: return {p(c|d) : c ∈ C}
9: end procedure

4.4 Remarks About the Algorithm

Algorithm 4 is used to compute the conditional probability of all well configurations
given the well data. An important step in this algorithm is to approximate the posterior
for progradation and aggradation parameters, conditional on the data and the well
configuration using the GA defined in Eq. (14). For each c, θ̂MAP is found in line 3 of
Algorithm 4, and is used in line 6. In line 4 of Algorithm 4, p(c|θ̂MAP) is evaluated
by MC sampling. This is done as described in Algorithm 2, conditional on the param-
eter θ̂MAP in line 3. Note that this step of approximating p(c|θ) is not performed in
the optimisation algorithm to find the GA, because doing so for every value of θ in
the optimisation steps would drastically increase the running time. Furthermore, the
joint p(c, θ , d) is dominated by the likelihood factor p(d|c, θ), which means that the
influence of p(c|θ) on the posterior of θ is small in comparison. Thus, it is reasonable
to ignore this factor in optimisation.

The solution for determining the posterior model of the bedset boundaries is given
by Eq. (12). Averaging is done over well configurations using MC samples from the
GA of progradation and aggradation parameters θ .

5 Simulation Study

This section presents a simulation study to examine the effect of the well configura-
tion approach (Algorithm 4). The simulation experiments test whether the proposed
approach can reproduce true well configurations simulated from the prior model. This
is achieved by generating multiple synthetic bedset geometries, well configurations
and well datasets, and comparing the results of the suggested methodology with the
truth. Recall that the well trajectory is assumed fixed and known, so the generated
subsurface models are the only stochastic element. In Fig. 5 are two realisations gen-
erated from the prior model and with the fixed well locations used in this simulation
study, displaying two distinct well configurations.

A goal of the simulation study is to compare the predictions obtained by the sug-
gested approach with predictions obtained using a single, fixed configuration. In the
comparison, prior configuration results are checked with expected posterior results.
Mathematically, by double expectation, this means that p(c) = Ed[p(c|d)]. In prac-
tice, the probabilities and expectations are computed by MC sampling.
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Table 2 Symbol, description and value of initial parameters

Symbol Description Value

m Number of bedsets 3

μθ Expected value of θ [0.7, 0.4]T

Σθ Covariance matrix of θ

[
0.01 −0.001

−0.001 0.1

]
σ 2
z Matérn variance parameter 0.001

η Matérn smoothness parameter 1

ρ Matérn length parameter 10

h Central difference scheme step size 0.01

N Number of MC-runs to approximate p(c|θ) 1,000

nr Num. simulations in MC-approx. of p(c) 100,000

na Num. simulations in MC-approx. of p(c|d) 10,000

5.1 Study Design

Sampling from the prior well configuration distribution p(c) is done by Algorithm 2.
The posterior sampling is done using Monte Carlo samples of data and computing the
well configuration for each data sample. Hence, for each simulated replicate db, b =
1, . . . , na , Algorithm 4 estimates the posterior probabilities p(c|db) for each outcome
c. Using double expectation, the marginal distribution p(c) is then approximated by

p̂(c) =
∫

p̂(c|d)p(d) dd ≈ 1

na

na∑
b=1

p(c|db). (17)

Increasing na reduces theMonte Carlo sampling error. By double expectation, samples
from p̂(c) in equation (17) are expected to yield a similar distribution to p(c) if the
approximate conditioning approach performs well. This assumes that the MC sample
approximations are accurate enough for reliable interpretation. The level of MC noise
will be quantified in the results.

The number of samples nr in Algorithm 2 and na in Eq. (17) are not necessarily the
same. Posterior sampling is much more demanding than the prior sampling, and the
Monte Carlo approximation could also converge more slowly. Recall that d includes
both inequality and equality constraints, as described in Sect. 4.3.

Table 2 lists the initial model parameters used in the simulations. These values were
chosen for geological realism at the authors’ discretion.

5.2 Results

Figure7 displays histograms of the simulated and approximated well configuration
distribution. The results show that the approximation is reasonably good since the
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Fig. 7 Simulatedwell configuration probability p(c) and approximatedwell configuration probability p̂(c).
The prior distribution is displayed in blue, while the approximate well configuration is in red. The numerical
values are also given in Table 3

distributions are very similar. Minor differences due to approximation error and MC
error are expected.

Table 3 gives configuration frequencies using simulations following Algorithm 2
and approximations using Algorithm 4. Approximate 95% confidence intervals for the
probabilities are also shown. These are based on the assumption that the frequency
of each configuration follows a binomial distribution with a large population size,
so the binomial distribution is approximated reasonably accurately by the normal
distribution. Hence, the fraction p̂ of a given configuration approximately follows
an N (p, p(1 − p)/nr ) distribution, where p is the true underlying probability of
that configuration. An approximate 95% confidence interval for the configuration
probability is then

⎡
⎣ p̂ − Φ−1(0.025)

√
p̂(1 − p̂)

nr
, p̂ + Φ−1(0.025)

√
p̂(1 − p̂)

nr

⎤
⎦ . (18)

Here, Φ(·) refers to the Gaussian distribution.
Standard methods for deriving confidence intervals are not applicable for con-

figuration probability estimates generated by Algorithm 4, due to the non-binomial
distribution of these configurations. Unlike binary outcomes in simulations, each sim-
ulation here has varied probabilities for different configurations. This variation is
illustrated through histograms showing the probability distribution for each configu-
ration, as presented in Fig. 8. Specifically, Fig. 8a, d, and g demonstrate consistently
low probabilities for certain configurations, while Fig. 8h, e show consistently high
probabilities for others. This indicates a relative likelihood of these configurations in
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Table 3 Probability and 95% confidence interval of every configuration using Monte Carlo sampling
(Algorithm 2) with 106 iterations and using the approximate approach (Algorithm 4) with 105 iterations

c configuration p(c) p̂(c)

[3, 2, 3] 0.555 (0.551, 0.559) 0.557 (0.541, 0.573)

[2, 3] 0.166 (0.159, 0.173) 0.160 (0.142, 0.178)

[3, 4] 0.132 (0.125, 0.139) 0.142 (0.125, 0.159)

[4, 3, 4] 0.106 (0.103, 0.109) 0.102 (0.092, 0.112)

[2, 1, 2] 0.026 (0.024, 0.028) 0.025 (0.020, 0.030)

[3, 2, 3, 4] 0.01 0.011

[1, 2] 0.003 0.002

[2, 1, 2, 3] 0.0009 0.000

[4, 3, 2, 3, 4] 0.0002 0.000

simulations. For configurations not clearly falling into high or low probability cate-
gories, their occurrence in simulations is less predictable. In cases where probabilities
are neither 0 nor 1, the variance in configuration frequency is less than in binomial
scenarios. Therefore, the binomial distribution can serve as an upper limit for the 95%
confidence interval. This approach is documented in Table 3 (right). However, this
method is less effective for extremely rare configurations, and in such cases, uncer-
tainty margins are not provided. It is observed that the estimated values p̂(c) and
p(c) are within the 95% upper confidence limit, validating the effectiveness of the
approximate conditioning algorithm.

To illustrate the effect of the configuration uncertainty, the probability of being in
a given bedset at a given grid cell is computed under two different conditions. In both
cases, the observation d is fixed. In one case the probability is computed by summing
over the conditional distribution of the well configurations similar to Eq. (12). In
the second case, only the most probable configuration ĉ is used in the prediction,
without any sum accounting for the posterior uncertainty in the well configuration.
The probability of a point x being in a bedset B, computed in these two ways can then
be written as

p1(x ∈ B) =
∑
c∈C

∫
I (x ∈ B|z)p(z|c, d)p(c|d) dz, (19)

and

p2(x ∈ B) =
∫

I (x ∈ B|z)p(z|ĉ, d) dz. (20)

Here, x is a point in the x-z coordinate system used in this paper. Hence, p1 is
the approximate bedset point probability when summing over the full configuration
distribution, while p2 represents the approximate bedset point probability by fixing
the configuration at ĉ. Both expressions are assessed by MC sampling, averaging over
z samples.
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Fig. 8 Frequencies of estimated probabilities p(c), produced by Algorithm 4 over repeated runs. The
vertical scale is the same for the first six panels, while the bottom two plots have a much shorter y-axis
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Fig. 9 Illustration of the point probabilities of bedsets. The first column shows the probabilities when
summing over all possible configurations with one observed intersection. The second column shows the
probabilities when fixing c = [2, 3], the most likely single intersection-configuration

Figures 9 and 10 display results where colours indicate the probability of observing
specific bedsets at various locations, with each figure focusing on a single bedset. The
left columns in these figures represent the full configuration distribution, while the
right columns show fixed configurations. Rows in each figure correspond to different
bedsets. For instance, the bottom left figure in Fig. 9 shows the probability for the
bottom bedset using the full distribution. Notably, probabilities in p1 (Eq. 19) exhibit
higher variance compared to p2 (Eq. 20), as p2 does not include all configurations,
resulting in less variability representation in bedset positions.
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Fig. 10 Illustration of the point probabilities of bedsets. The first column shows the probabilities when
summing over all possible configurations with intersections. The second column shows the probabilities
when fixing the configuration to [3, 2, 3], the most likely configuration with two intersections

Figure11 shows cross sections of the bedset point probabilities by fixing the x-
coordinate to x = 50. Figure11a, b illustrate both probabilities for all three bedsets
with one and two well bedset transition observations, respectively. The probabilities
p1 display flatter curves, representing the increased uncertainty in bedset position
when averaging over configurations. Also, the overlap between curves is greater for
probabilities p1, meaning thatmultiple bedsets can occupy the same space for different
configurations.
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Fig. 11 Illustration of point probabilities of bedsets, when fixing x = 50

Bedset information can be very important for reservoir flow. Although this study
refrains from direct flow simulation, it is interesting to study the lengths of well trajec-
tory segments lying within each bedset as a proxy for flow behaviour. The significance
of these well lengths stems from the fact that flow differs both between andwithin bed-
sets. In evaluating well lengths, it is essential to consider the well configurations. For
instance, a well crossing three bedset transitions can exhibit various configurations,
each leading to distinct lengths.

Figure12 illustrates the well length distributions for the case of two bedset transi-
tions. Similar to what was done for the point probabilities, the length distributions are
shown both for the mode configuration c = [3, 2, 3] and for the weighted sum across
all possible configurations. Key observations include:

– For bedset 2, the mode configuration shows a unimodal distribution with a mode
at around x = 52 with a constant rise in density from the left. Weighting over
all configurations, there is probability 0.154 of having 0 well length, which is the
contribution from configuration c = [4, 3, 4]; this gives a lower overall density
for the remaining well lengths.

– For bedset 3, the mode configuration reveals a unimodal distribution with a mode
centred roughly at x = 8. The average across configurations also has some
probability for zero-well length due to the configuration c = [2, 1, 2] of prob-
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Fig. 12 PDFs of well lengths within bedsets 2 and 3 for three bedset transition observations in well. Plots
are both for the mode configuration c = [3, 2, 3] and weighted over all configurations

ability 0.035. The PDF also shows a flatter curve, which is the contribution from
c = [4, 3, 4], giving larger well lengths.

These differences in the distributions might have profound implications for flow sim-
ulations. In this situation, one risks ignoring the high probability of diminished zero
extraction from bedsets 2 and 3, and potentially higher extraction from bedset 3.

5.3 Discussion

Figures 9 and 10 highlight some of the issues of existing conditional models. Merely
assuming a well configuration risks under-representing the variance of conditional
objects. Moreover, Fig. 12 shows that this might have an effect on flow simulation as
well. In Fig. 9which showcases the scenariowith a single bedset boundary intersection
(c = [2, 3]), the under-representation of variance is more distinct than in Fig. 10. This
occurs because configurations with more data (here two bedset intersections rather
than just one) have a smaller variance than configurations with one bedset intersection.
Thus, the modelling assumption that some possible well configurations can be safely
ignored clearly depends on the well configuration distribution. In some cases, when
the prior model parameters are very strict, or when the equality constraints contain a
lot of information, this assumption can lead to an excellent approximation of the true
distribution. However, with sparse data or a diffuse prior, or both, it is a questionable
assumption at best.

The explicit calculation of p(c|d) works only when the combinatorics involved
are within reasonable limits. In practice, this means that the number of possible well
configurations cannot be too large. As shown in Fig. 4, the possible configurations
can be represented as paths in a graph. When the number of observations grows large
and there are many bedsets, the number of paths increases rapidly (Sloane 2014). For
example, whenm = 8 and n = 12, there are 13,884 possible configurations. Computa-
tionally, looping through all combinations in Algorithm 4 quickly becomes infeasible.
Thus, extending the applicability of the approach described in this article to situations
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with more observations or bedsets will require a way to eliminate infeasible paths
to improve the combinatorics. In the scientific literature, various methods have been
explored to mitigate uncertainty in well data, particularly for sampling stratigraphic
configurations. The study referenced as (Lallier et al. 2012) employs correlation rules
to align well logs of stratigraphic sequences. This correlation is based on the premise
that two wells can be matched if they exhibit not only similar diagenetic character-
istics but also comparable well log patterns. On the other hand, Baville et al. (2022)
introduces the use of Dynamic Time Warping (DTW) for correlating stratigraphic
sequences across wells. This approach hinges on the assumption that stratigraphic
sequences within a well should have synchronous ages.

Although these methods share certain similarities with the research presented in
this paper, our focus diverges significantly. We aim to determine the probabilities of
various stratigraphic sequences within a single well log, grounded on specific prior
assumptions. In contrast, the studies in Lallier et al. (2012) and Baville et al. (2022)
primarily concentrate on correlating well logs to infer similarities in depositional
environments among observed units.

6 Closing Remarks

6.1 General Thoughts

In this article, a novel method for conditioning a surface-based model to non-vertical
wells has been presented. This approach differs from conventional conditioning meth-
ods in emphasising the role of well configurations, the coupling between observations
and modelled objects. Whereas configurations are typically treated as implicit parts
of models, or as byproducts of conditioning procedures, the probabilistic model and
conditioning algorithm discussed here represents configurations explicitly and makes
them a core component of the conditioning process. The overarching idea is that
generating conditional realisations is hard to do in the general case, but becomes rela-
tively easy if a configuration is known. Once the configuration concept has been made
explicit, the wider conditioning problem is, in a certain sense, reduced to the specific
problem of configuration conditioning.

6.2 Limitations and Area of Applicability

There are some clear limitations to themethod presented here, mainly in the number of
possible configurations that can be handled. Each evaluation of p(c|d) is costly, and the
number of evaluations increases linearly with the number of possible configurations.
Furthermore, as the number of possible configurations increases, the MC sampling of
p(c|θMAP) becomes less stable, requiringmore iterations. Thus, the cost per evaluation
also increases.

Another limiting factor is the ability to find a good estimate for θMAP. As more
data and parameters are added, the optimisation of the posterior distribution gets
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increasingly difficult. The quality of the Gaussian approximation for parameters could
also get worse.

However, in a simple setting, such as the one described here, the approach works
very well. This makes it suitable as a reference tool for more complex algorithms
trying to handle larger data sets. It validates implementations in terms of reproducing
correct configuration probabilities, and more complex algorithms must agree with the
one presented here on small data sets.

6.3 FurtherWork

The scope of this article is limited to a single non-vertical well. A natural extension
of this work is to allow multiple non-vertical wells. This would require mitigating or
overcoming some of the limitations described in Sect. 6.2. Another natural direction
for further investigation is the introduction of additional parameters in the prior model
to enable representation ofmore complex geological structures. For example, allowing
bedsets to erode the underlying deposit, have negative aggradation or progradation,
and to pinch out rather than extend to the edge of the model domain. A more complex
prior model would give more realistic posterior realisations. Such a refinement would
make the model more applicable to real data.

For the challenge of conditioning geologically realistic facies models, one must
in this situation connect the bedset models with a facies model in each bedset. For
this task, there is currently much interesting work in developing machine learning
approaches for the conditioning problem here such as generative adversarial networks
(GANs); see, for example, Song et al. (2021) and Feng et al. (2022) or diffusionmodels
(Lee et al. 2023).
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A B S T R A C T

Creating accurate and geologically realistic reservoir facies based on limited measurements is crucial for field
development and reservoir management, especially in the oil and gas sector. Traditional two-point geostatistics,
while foundational, often struggle to capture complex geological patterns. Multi-point statistics offers more
flexibility, but comes with its own challenges related to pattern configurations and storage limits. With the
rise of Generative Adversarial Networks (GANs) and their success in various fields, there has been a shift
towards using them for facies generation. However, recent advances in the computer vision domain have
shown the superiority of diffusion models over GANs. Motivated by this, a novel Latent Diffusion Model is
proposed, which is specifically designed for conditional generation of reservoir facies. The proposed model
produces high-fidelity facies realizations that rigorously preserve conditioning data. It significantly outperforms
a GAN-based alternative. Our implementation on GitHub: github.com/ML4ITS/Latent-Diffusion-Model-for-
Conditional-Reservoir-Facies-Generation

1. Introduction

Creating accurate and geologically realistic reservoir facies predic-
tions based on limited measurements is a critical task in development
and production of oil and gas resources. It is also very relevant in
connection with CO2 storage, where one makes decisions about in-
jection strategies to manage leakage risk and ensure safe long-term
operations. In both contexts, key operational decisions are based on
realizations of stochastic reservoir models. Through the use of multiple
realizations, one can go beyond point-wise prediction of facies, and
additionally quantify spatial variability and correlation. This gives
better descriptions of the relevant heterogeneity.

When generating facies realizations, one must honor both geologi-
cal knowledge and reservoir-specific data. A wide range of stochastic
models have been proposed to solve this problem. A good overview
can be found in the book by Pyrcz and Deutsch (2014). There are
variogram-based models, where the classical concept of a variogram-
based Gaussian field (see for instance Cressie, 2015) is combined with
a discretization scheme to generate facies. Then there are more geo-
metric approaches, such as object models or process-mimicking models,
where facies are described as geometric objects with an expected shape
and uncertainty. Of particular interest here are multiple-point models,
which use a training image to generate a pattern distribution, and then
generate samples following this distribution.

∗ Corresponding author.
E-mail address: daesoo.lee@ntnu.no (D. Lee).

Multiple-point models are very flexible, and allow for complex
interactions between any number of facies. But as the method funda-
mentally hinges on storing pattern counts, there are strict limitations
due to memory. In practice, only a limited number of patterns can
be handled, leading to restrictions in pattern size and a demand for
stationarity of patterns. Furthermore, the simulation algorithm has
clear limitations in its ability to reproduce the patterns, so a realization
will typically contain many patterns not found in the initial database,
leading to unwanted geometries (Zhang et al., 2019). Limitations like
these have led to the adoption of models such as generative adversarial
networks (GANs, Goodfellow et al., 2020). In recent years, GANs have
gained substantial attention for the conditional generation of realistic
facies while retaining conditional data in a generated sample, see
e.g. Chan and Elsheikh (2019), Zhang et al. (2019), Azevedo et al.
(2020), Pan et al. (2021), Song et al. (2021), Zhang et al. (2021), Yang
et al. (2022), Razak and Jafarpour (2022) and Hu et al. (2023).

We frame stochastic facies modeling as a conditional generation
problem in machine learning. This view is motivated by the observa-
tion that in some existing methods for reservoir modeling, generating
unconditional realizations is comparatively easy, and the difficulty
increases sharply as one moves to generating conditional realizations.
The principal idea of this paper is to exploit this difficulty gap by
using easily generated unconditional realizations as training data for a
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Fig. 1. Illustration of our conditional reservoir generation problem in which the generative model stochastically samples a realistic reservoir (right) given the limited measurements
(left). The regions with no information are denoted in gray.

machine learning model. Crucially, this model will learn not only how
to reproduce features seen in the training realizations, but also how to
honor conditioning data. A model successfully trained in this way can
generate conditional realizations given previously unseen conditioning
data. Fig. 1 illustrates our conditional generation problem.

Recent studies in computer vision have demonstrated the superi-
ority of diffusion models over GANs in terms of generative perfor-
mance (Dhariwal and Nichol, 2021; Rombach et al., 2022; Ho et al.,
2022; Kim et al., 2022). As a result, diffusion models are state-of-the-
art for image generation, while the popularity of GANs has diminished
due to limitations including convergence problems, mode collapse,
generator-discriminator imbalance, and sensitivity to hyperparameter
selection. Latent diffusion models (LDMs) are a type of diffusion model
in which the diffusion process occurs in a latent space rather than
in pixel space (Rombach et al., 2022). LDMs have become popular
because they combine computational efficiency with good generative
performance.

Motivated by the progress made with diffusion models on computer
vision and image processing tasks, this work proposes a novel LDM,
specifically designed for the generation of conditional facies realiza-
tions in a reservoir modeling context. Its appeal lies in the ability to
strictly preserve conditioning data in the generated realizations. To the
authors’ knowledge, this is the first work to adopt a diffusion model for
conditional facies generation.

Experiments were carried out using a dataset of 5000 synthetic 2D
facies realizations to evaluate the proposed diffusion model against
a GAN-based alternative. The diffusion model achieved robust condi-
tional facies generation performance in terms of fidelity, sample di-
versity, and the preservation of conditional data, while the GAN-based
model struggled with multiple critical weaknesses.

To summarize, the contributions of this paper are:

• the adoption of a diffusion model for conditional facies genera-
tion,

• a novel LDM, designed to preserve observed facies data in gener-
ated samples,

• conditional facies generation with high fidelity, sample diversity,
and robust preservation.

In Section 2, we describe GANs and background information for
the LDMs. In Section 3, we present our suggested methodology for
conditional facies realizations with LDMs. In Section 4, we show ex-
perimental results of our method applied to a bedset model with
stacked facies, including the comparison with GANs. In Section 5, we
summarize and discuss future work.

2. Background on generative models

2.1. Generative adversarial network for conditional image generation

GANs were a breakthrough innovation in the field of generative AI
when they emerged in 2014. The core mechanism of GANs involves two
neural networks, a generator and a discriminator, engaged in a sort of
cat-and-mouse game. The generator aims to mimic the real data, while
the discriminator tries to distinguish between real and generated data.
Through iterative training, the generator improves its ability to create

Fig. 2. Illustration of the U-Net architecture (Cai et al., 2022), where Conv denotes a
convolutional layer. U-Net is a convolutional neural network architecture, featuring an
encoder (first half of U-Net) and decoder (second half) structure with skip connections
that allow for the transfer of spatial information across layers, which in turn enables
precise localization and high-resolution output.

realistic data, and the discriminator becomes more adept at identifying
fakes.

Conditional Generative Adversarial Networks (CGANs) were pro-
posed by Mirza and Osindero (2014) in the same year as the GAN.
The CGAN was designed to guide the image generation process of
the generator given conditional data such as class labels and texts as
auxiliary information. Since then, CGANs have been further developed
to perform various tasks. Among these, Isola et al. (2017) stands
out from the perspective of conditional facies generation, proposing
a type of CGAN called Pixel2Pixel (Pix2Pix), which has become a
popular GAN method for image-to-image translation. Pix2Pix works
by training a CGAN to learn a mapping between input images and
output images from different distributions. For instance, the input
could be a line drawing, and the output a corresponding color image.
The mapping can be realized effectively with the help of the U-Net
architecture (Ronneberger et al., 2015), illustrated in Fig. 2.

Image-to-image translation is directly relevant to conditional facies
generation because the input can be facies observations on a limited
subset of the model domain, and the output can be a complete facies
model. This is the typical situation when the goal is to generate 2D
or 3D facies realizations from sparse facies observations at the well
locations.

2.2. GANs for conditional facies generation

Dupont et al. (2018) were the first to adopt a GAN for conditional
facies generation, overcoming the limitations of traditional geostatisti-
cal methods by producing varied and realistic geological patterns that
honor measurements at data points. However, the latent vector search
required to ensure a match with the conditioning data makes the sam-
pling process inefficient. Chan and Elsheikh (2019) introduced a second
inference network that enables the direct generation of realizations
conditioned on observations, thus providing a more efficient condi-
tional sampling approach. Zhang et al. (2019) introduced a GAN-based
approach to generate 3D facies realizations, specifically focusing on
complex fluvial and carbonate reservoirs. Their paper clearly demon-
strated the superiority of GAN over MPS for this application. Azevedo
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Fig. 3. Illustration of the principle of a diffusion process. The diffusion modeling mainly consists of (1) forward process (noising) and (2) reverse process (denoising). The noising
process begins with a data sample and incrementally adds Gaussian noise over multiple time steps to convert it into a Gaussian noise sample; conversely, the denoising process
iteratively refines this Gaussian noise sample back into a data-like sample, guided by a neural network trained specifically for this denoising task.

et al. (2020) used GANs in a similar way, but the evaluation of its
conditional generation makes this study different from others. Where
GANs from other studies typically condition on multiple sparse points,
the paper considered conditioning on patches and lines. Because such
shapes typically involve a larger region than multiple sparse points,
their conditional setup is more difficult, which is demonstrated in
experiments. Pan et al. (2021) used Pix2Pix, adopting the U-Net ar-
chitecture. It takes a facies observation and noise as input, and then
stochastically outputs a full facies realization. Notably, the preservation
of conditional data in a generated sample was shown to be effective
due to the U-Net architecture that enables precise localization. A paper
by Zhang et al. (2021) is concurrent with and methodologically similar
to Pan et al. (2021) as both articles propose a GAN built on U-Net.
However, the U-Net GAN of Zhang et al. (2021) has an additional loss
term to ensure sample diversity, which simplifies the sampling process.
Subsequently, many studies have sought to improve conditional facies
generation using GANs, working within the same or similar frameworks
as the studies mentioned above (Song et al., 2021; Yang et al., 2022;
Razak and Jafarpour, 2022; Hu et al., 2023).

The main difference between the current study and previous re-
search is the type of generative model employed, specifically the choice
of a diffusion model over a GAN. This also leads to a specific network
architecture used to enable conditioning. Another difference is that
whereas much earlier work is done in a top-down view, we focus on
a vertical section. A consequence of this is that we get a different
structure for the conditioning data. In a vertical section, well data
become paths, giving connected lines of cells with known facies. In
the top-down view, wells appear as scattered individual grid cells with
known facies.

2.3. Denoising Diffusion Probabilistic Model (DDPM)

Ho et al. (2020) represented a milestone for diffusion model-based
generative modeling. DDPMs offer a powerful framework for generating
high-quality image samples from complex data distributions. At its core,
a DDPM leverages the principles of diffusion processes to model a data
distribution. It operates by iteratively denoising a noisy sample and
gradually refining it to generate a realistic sample as illustrated in
Fig. 3. This denoising process corresponds to the reverse process of a
fixed Markov process of a certain length.

A DDPM employs a denoising autoencoder, denoted by 𝜖𝜃(𝒙𝑡, 𝑡); 𝑡 =
1,… , 𝑇 . The denoising autoencoder gradually refines the initial noise
𝒙𝑇 to generate a high-quality sample 𝒙0 that closely resembles the
target data distribution. A U-Net is used for the denoising autoencoder
since its architecture provides effective feature extraction, preservation
of spatial details, and robust performance in modeling complex data
distributions (Baranchuk et al., 2022).

Training: Prediction of noise in 𝒙𝑡. DDPM training consists of two key
components: the non-parametric forward process and the parameter-
ized reverse process. The former component represents the gradual
addition of Gaussian noise. In contrast, the reverse process needs to
be learned to predict noise 𝝐 in 𝒙𝑡. Its loss function is defined by

𝐿DDPM = E𝒙,𝜖∼ (𝟎,𝐈),𝑡
[‖𝝐 − 𝜖𝜽(𝒙𝑡, 𝑡)‖22

]
, (1)

where 𝜖𝜽 denotes the denoising autoencoder with parameters 𝜽. Eq. (1)
measures the discrepancy between the noise and the predicted noise
by the denoising autoencoder. While Eq. (1) defines a loss function
for unconditional generation, the loss for conditional generation is
specified by

𝐿DDPM,𝑐 = E𝒙,𝑐 ,𝝐∼ (𝟎,𝐈),𝑡
[‖𝝐 − 𝜖𝜽(𝒙𝑡, 𝑡, 𝑐)‖22

]
, (2)

where 𝑐 denotes conditional data such as texts or image class, and in
our situation, the observed facies classes in wells. Typically, 𝐿DDPM
and 𝐿DDPM,𝑐 are both minimized during training, to allow both uncon-
ditional and conditional generation. For details, see Ho and Salimans
(2021).

Sampling via learned reverse process. The forward diffusion process is
defined as 𝑞(𝒙𝑡|𝒙𝑡−1) =  (𝒙𝑡;

√
1 − 𝛽𝑡𝒙𝑡−1, 𝛽𝑡𝐈) where 𝛽𝑡 is called a

variance schedule and 1 ≥ 𝛽𝑇 > 𝛽1 ≥ 0. Equivalently, it can be written
𝒙𝑡 =

√
1 − 𝛽𝑡𝒙𝑡−1 +

√
𝛽𝑡𝝐𝑡−1 with 𝝐𝑡−1 ∼  (𝟎, 𝐈). We further reformulate

the equation with respect to 𝒙𝑡−1 and it becomes

𝒙𝑡−1 = (𝒙𝑡 −
√
𝛽𝑡𝝐𝑡−1)∕

√
1 − 𝛽𝑡 = (𝒙𝑡 −

√
1 − 𝛼𝑡𝝐𝑡−1)∕

√
𝛼𝑡, (3)

where 𝛼𝑡 = 1 − 𝛽𝑡. Then we can go backwards, sampling 𝒙0 from 𝒙𝑇 by
recursively applying Eq. (3) for 𝑡 = 𝑇 ,… , 2, 1.

2.4. Latent Diffusion Model (LDM)

LDMs extend DDPMs by introducing a diffusion process in a latent
space. The main idea of LDMs is illustrated in Fig. 4, aligning with the
overview of our proposed method for conditional facies generation as
depicted in Fig. 5. In the common situation, data are typically text
or images as indicated to the far right in Fig. 4. In our setting, the
conditional data are facies observations along a few well paths in the
subsurface.

Compared with a DDPM, an LDM has two additional components:
encoder  and decoder . The encoder transforms 𝒙 into a latent
representation, 𝒛 = 𝒛0 = (𝒙), while the decoder reconstructs 𝒛 to
produce �̃�. Importantly, the encoding and decoding processes involve
downsampling and upsampling operations, respectively. The encoder
and decoder are trained so that �̃� is as close as possible to 𝒙. This is
ensured by minimizing a reconstruction loss between 𝒙 and �̃�. Notably,
the forward and backward processes are now taking place in the latent
space, therefore 𝒛𝑇 denotes a Gaussian noise sample. In Fig. 4, 𝑐
denotes an encoder for conditional data. The encoded conditional data
is fed into the reverse process for conditioning the generation process.

The main advantage of LDMs over DDPMs is computational ef-
ficiency. The encoder  compresses high-dimensional data 𝒙 into a
lower-dimensional latent space represented via latent variable 𝒛. This
dimensionality reduction significantly reduces the computational cost,
making LDM more feasible to be trained on local devices. However, a
trade-off exists between computational efficiency and sample quality.
Increasing the downsampling rate of  increases the computational
efficiency but typically results in a loss of sample quality, and vice
versa.

Training of LDMs adopts a two-staged modeling approach (Van
Den Oord et al., 2017; Chang et al., 2022). The first stage (stage 1) is
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Fig. 4. Overview of LDM. The encoder  and decoder  enable data compression, enabling the forward and reverse processes to operate in a reduced-dimensional space. This eases
the task of learning prior and posterior distributions and improves computational efficiency. In addition, conditional data can be fed into the reverse process, enabling conditional
generation.

Fig. 5. Overview of our proposed method. Our method can be regarded as an adapted version of LDM to effectively handle the categorical input and allow maximal preservation
of conditional facies data in generated facies while maintaining the high fidelity of generated facies.

for learning the compression and decompression of 𝒙 by training  and, and the second stage (stage 2) is for learning the prior and posterior
distributions by training 𝜖𝜽.

In stage 1, 𝒙 is encoded into 𝒛 and decoded back into the data space.
The training of  and  is conducted by minimizing the following
reconstruction loss:

‖𝒙 −((𝒙))‖22. (4)

In stage 2, the denoising autoencoder 𝜖𝜽 is trained to learn prior and
posterior distributions, while  and  are set to be untrainable (frozen).
This involves minimizing

𝐿LDM = E(𝒙),𝝐∼ (𝟎,𝐈),𝑡
[‖𝝐 − 𝜖𝜽(𝒛𝑡, 𝑡)‖22

]
, Prior training,

(5)
𝐿LDM,𝑐 = E(𝒙),𝑐 ,𝝐∼ (𝟎,𝐈),𝑡

[‖𝝐 − 𝜖𝜽(𝒛𝑡, 𝑡, 𝑐)‖22
]
, Posterior training.

(6)

The recent work that proposed DALLE-2 (Ramesh et al., 2022) em-
pirically found that predicting 𝒛0 instead of 𝝐 results in better training.
We adopt the same approach for better training and methodological
simplicity of our conditional sampling. Hence, we in stage 2 instead
minimize

𝐿LDM(𝒛, 𝑔𝜽) = E(𝒙),𝝐∼ (𝟎,𝐈),𝑡
[‖𝒛0 − 𝑔𝜽(𝒛𝑡, 𝑡)‖22

]
, (7)

𝐿LDM,𝑐 (𝒛, 𝑐 , 𝑔𝜽) = E(𝒙),𝑐 ,𝝐∼ (𝟎,𝐈),𝑡
[‖𝒛0 − 𝑔𝜽(𝒛𝑡, 𝑡, 𝑐)‖22

]
, (8)

where 𝑔𝜽 is a denoising autoencoder that predicts 𝒛0 instead of 𝝐.
Then sampling in the latent space can be formulated as 𝑞(𝒛𝑡−1|𝒛𝑡, 𝒛0) =
 (𝒛𝑡−1; �̃�𝑡(𝒛𝑡, 𝒛0), 𝛽𝑡𝐈) where �̃�𝑡(𝒛𝑡, 𝒛0) =

√
�̄�𝑡−1𝛽𝑡
1−�̄�𝑡

𝒛0 +
√
𝛼𝑡(1−�̄�𝑡−1)
1−�̄�𝑡

𝒛𝑡, 𝛽𝑡 =
1−�̄�𝑡−1
1−�̄�𝑡

𝛽𝑡, and �̄�𝑡 =
∏𝑡

𝑠=1 𝛼𝑠. Equivalently, we have

𝒛𝑡−1 = �̃�𝑡(𝒛𝑡, 𝒛0) +
√

𝛽𝑡𝝐. (9)

Then we can sample 𝒛0 from 𝒛𝑇 by recursively applying

𝒛𝑡−1 = �̃�𝑡(𝒛𝑡, 𝑔𝜽(𝒛𝑡, 𝑡)) +
√

𝛽𝑡𝝐. (10)

3. Methodology

We here propose our LDM method tailored for conditional reservoir
facies generation with maximal preservation of conditional data. We
first describe the differences between image generation and reservoir
facies generation that are important to be considered in the design of
our method, and then outline the proposed method.

3.1. Differences between image generation and reservoir facies generation

There are several distinct differences between the image genera-
tion problem and the reservoir facies generation problem that pose
challenges in employing an LDM for reservoir facies generation:

Input types. In image generation, an input image is considered continu-
ous and one has 𝒙 ∈ R3×𝐻×𝑊 where 3, 𝐻 , and 𝑊 denote RGB channels,
height, and width, respectively. In the reservoir facies generation,
however, the input is categorical 𝒙 ∈ Z𝐹×𝐻×𝑊

2 where Z2 ∈ {0, 1},
𝐹 denotes the number of facies types, and each pixel, denoted by
𝒙∶ℎ𝑤 = 𝒙𝑓 ℎ𝑤∀𝑓 = 1, 2,… , 𝐹 , is a one-hot-encoded vector where 1 for a
corresponding facies type index, 0 otherwise. The conditional data of
𝒙, notated as 𝒙𝑐 has a dimension of (𝐹 + 1 ×𝐻 ×𝑊 ). It has one more
dimension than 𝒙 for indicating a masked region.

Properties of conditional data. The domains of conditional data in LDM
are often different from the target domain. It can for instance be a
text prompt, which is among the most common conditional domains. In
the conditional reservoir facies generation, unlike common applications
of LDMs, the conditional domain corresponds to the target domain.
Importantly, its conditional data 𝒙𝑐 is spatially aligned with 𝒙.

Strict requirement to preserve conditional data in generated sample. In
an LDM, the conditioning process has cross-attention (Vaswani et al.,
2017) between the intermediate representations of the U-Net and the
representation of conditional data obtained with 𝑐 . One way of view-
ing this is that the encoded conditional data is mapped to the U-Net as
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Fig. 6. Overview of the training process of our proposed method. It consists of two subsequent training stages: stage 1 for learning to compress and decompress data, and stage 2
for learning the conditional denoising process. Two U-Nets are used in stage 2. One is for the denoising process and the other is for extracting the intermediate representations
of data latent vector 𝒛𝑐 . After completing the training process, the generation of a new sample (sampling process) involves the denoising of variable latent vector 𝒛𝑇 into 𝒛0 = 𝒛,
using Eq. (10), followed by its decoding into the data space, which is expressed as (𝒛).

auxiliary information. However, an LDM has a caveat in the conditional
generation — that is, its conditioning mechanism is not explicit but
rather implicit. To be more specific, conditional data is provided to
the denoising autoencoder, but the denoising process is not penalized
for insufficiently honoring the conditional data. As a result, LDMs are
often unable to fully preserve conditional data in the generated sample
but rather only capture the context of conditional data. The limitation
has been somewhat alleviated using classifier-free guidance (Ho and
Salimans, 2021), but the problem still persists. Our problem with facies
generation requires precise and strict preservation of conditional data
in the generated data. In other words, facies measurements in wells
should be retained in the predicted facies realization. Therefore, an
explicit conditioning mechanism needs to be incorporated.

3.2. Proposed method

Our proposed method, tailored for conditional reservoir facies gen-
eration, is based on LDMs, leveraging its computational efficiency and
resulting feasibility. The suggested method addresses several key as-
pects, including proper handling of the categorical input type, effective
mapping of conditional data to the generative model, and maximal
preservation of conditional data through a dedicated loss term for data
preservation. Fig. 6 presents the overview of the training process of our
proposed method.

Stage 1. has two pairs of encoder and decoder, trained to compress
and decompress 𝒙 and 𝒙𝑐 , respectively. The first pair is  and  for the
unconditional part, and the second pair is 𝑐 and 𝑐 for the conditional
part. Here,  compresses 𝒙 to 𝒛, while 𝑐 compresses 𝒙𝑐 to 𝒛𝑐 . Because
𝒙 and 𝒙𝑐 are spatially aligned, we use the same architectures for  and
𝑐 , and  and 𝑐 . Furthermore, our input is categorical as 𝒙 ∈ Z𝐹×𝐻×𝑊

2
and 𝒙𝑐 ∈ Z𝐹+1×𝐻×𝑊

2 . Therefore, we cannot naively use the stage 1 loss
of LDM in Eq. (4). We tackle the limitation by reformulating the task as
a classification task instead of a regression. Hence, our loss function in
stage 1 is based on the cross-entropy loss function and it is formulated
as:

𝐿st age1 = E𝒙,ℎ,𝑤

[
−
∑
𝑓

𝒙𝑓 ℎ𝑤 log sof t max(((𝒙))𝑓 ℎ𝑤)

−
∑
𝑓
(𝒙𝑐 )𝑓 ℎ𝑤 log sof t max(𝑐 (𝑐 (𝒙𝑐 ))𝑓 ℎ𝑤)

]
(11a)

= E𝒙,ℎ,𝑤

[
−
∑
𝑓

𝒙𝑓 ℎ𝑤 log �̃�𝑓 ℎ𝑤 −
∑
𝑓
(𝒙𝑐 )𝑓 ℎ𝑤 log (�̃�𝑐 )𝑓 ℎ𝑤

]
(11b)

= 𝐶 𝐸 (𝒙, �̃�) + 𝐶 𝐸 (
𝒙𝑐 , �̃�𝑐

)
(11c)

= 𝐿r econs (𝒙,  ,) + 𝐿r econs
(
𝒙𝑐 , 𝑐 ,𝑐

)
, (11d)

where 𝐶 𝐸 denotes a cross-entropy loss function and 𝐿recons denotes a
reconstruction loss function.

Stage 2. is dedicated to learning prior and posterior distributions via
learning the reverse denoising process. The learning process involves
two important perspectives: (1) effective mapping of 𝒛𝑐 to the denoising
autoencoder 𝑔𝜽 to enable the conditional generation and (2) maximal
preservation of conditional data in the generated data.

To achieve the effective mapping of 𝒛𝑐 to 𝑔𝜽, we employ two U-
Nets with the same architecture to process 𝒛 and 𝒛𝑐 , respectively. The
first U-Net is the denoising autoencoder 𝑔𝜽 and the second U-Net is
denoted 𝑔𝝓 for extracting multi-level intermediate representations of 𝒛𝑐 .
In the conditional denoising process, the intermediate representations
of 𝒛𝑐 are mapped onto those of 𝒛𝑡 obtained with 𝑔𝜽. This multi-level
mapping enables a more effective conveyance of 𝒛𝑐 which in turn
results in better preservation of conditional data in the generated facies
realizations. The multi-level mapping is possible because 𝒙 and 𝒙𝑐 are
spatially aligned, and equivalently for 𝒛 and 𝒛𝑐 with their intermediate
representations from the U-Nets.

To achieve maximal preservation of conditional data, we explicitly
tell the generative model to preserve 𝒙𝑐 in the generated sample by
introducing the following loss:

𝐿pr eser v = 𝐶 𝐸 (
𝒙𝑐 , �̂�𝑐

)
, (12)

where �̂�𝑐 represents a softmax prediction of 𝒙𝑐 and is a subset of �̂� in
which �̂� = softmax((�̂�)) and �̂� ∼ 𝑝𝜽(𝒛|𝒛𝑡, 𝑔𝝓(𝒛𝑐 )). Here, 𝑝𝜽(𝒛|𝒛𝑡, 𝑔𝝓(𝒛𝑐 ))
denotes the conditional probabilistic generative denoising process to
sample �̂�, given 𝒛𝑡 and 𝑔𝝓(𝒛𝑐 ).

Finally, our loss function in stage 2 is defined by

𝐿st age2 =
{
𝑝uncond𝐿LDM

(
𝒛, 𝑔𝜽

)
+ (1 − 𝑝uncond)𝐿LDM,c

(
𝒛, 𝑔𝝓(𝒛𝑐 ), 𝑔𝜽

)}

+ 𝐿preserv, (13)

where 𝑝uncond is a constant probability of unconditional generation,
typically assigned a value of either 0.1 or 0.2 (Ho and Salimans, 2021).

4. Experiments

Our dataset comprises 5000 synthetic reservoir facies samples. The
generating facies model is motivated by data from shoreface deposits in
wave-dominated shallow-marine depositional environments. For details
about the geological modeling assumptions about bedset stacking and
facies sampling, see Appendix A. The data samples are partitioned into
training (80%) and test datasets (20%). In our experiments, we assess
the effectiveness of our proposed version of an LDM for both condi-
tional and unconditional facies generation. Furthermore, we present a
comprehensive comparative analysis of our diffusion model against a
GAN-based approach. Specifically, we adopt the U-Net GAN from Zhang
et al. (2021) due to its similar conditional setup to ours and because it
has shown good performance in terms of fidelity and sample diversity
in the conditional generation of binary facies. For the details of our
diffusion model and U-Net GAN, see Appendices B and C, respectively.
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Fig. 7. Visualization of transitions in the conditional denoising process. The denoising autoencoder sequentially denoises latent variable vector 𝒛𝑇 to 𝒛0, conditioned on the encoded
𝒙𝑐 , in the sampling process. Each 𝒛𝑡 in the process can decoded and visualized to gain a better understanding of the conditional denoising process. We present (𝒛𝑡) at the denoising
steps of 1000, 750, 500, 250, and 0, where 𝑇 = 1000 in this setup. The preservation error indicates the degree of accuracy with which the conditional data is retained within the
generated data. Pixels colored in black indicate the error.

4.1. Conditional facies generation by the proposed diffusion model

In the sampling process, the denoising autoencoder iteratively per-
forms denoising to transition 𝒛𝑇 (Gaussian noise) into 𝒛0 with each
step being conditioned on the encoded conditional data. To provide
a granular insight into the progressive denoising process, we present
a visual example of transitions of the conditional denoising process in
Fig. 7. (Additional examples are presented in Fig. 13 in Appendix E.)
At the beginning of the denoising process (𝑡 = 1000 = 𝑇 ), 𝒛𝑡 is
initially composed of random Gaussian noises. Consequently, (𝒛𝑡) also
represents noise, resulting in a significant preservation error. However,
as the denoising steps progress towards 𝑡 = 0, the generated facies grad-
ually become more distinct and recognizable while the preservation
error becomes smaller.

In Fig. 7, 𝒙𝑐 is sourced from the test dataset, and we visualize the
most probable facies types within (𝒛𝑡). It is important to emphasize
that (𝒛𝑡) belongs to the space Z𝐹×𝐻×𝑊

2 , where the most probable facies
type corresponds to the channel 𝑓 with the highest value. The results
demonstrate the effectiveness of the denoising process of our method.
We notice the gradual improvement in the fidelity of the generated
facies and the preservation error, eventually producing realistic facies
that honor the conditional data.

The denoising process is stochastic, therefore various facies can
be generated given 𝒙𝑐 . In Fig. 8, multiple instances of conditionally-
generated facies are showcased for different 𝒙𝑐 . Each row in this display
hence represents multiple realizations of facies models, given the well
facies data (second column of each row).

The results highlight the efficacy of our diffusion model in capturing
the posterior and sample diversity while adhering to given constraints.
In particular, the conditional generation can be notably challenging,
especially when there is a substantial amount of conditional data
to consider (e.g., the third row in Fig. 8). However, our diffusion
model demonstrates its capability to honor the conditional data while
generating realistic facies faithfully. This capability facilitates the quan-
tification of uncertainty associated with the generated facies, providing
valuable insights for decision-makers in making informed decisions.
With the bedset model, the well data contains much information about
the transition zone from one facies type to another. This information
clearly constrains the variability in the conditional samples, and there
is not so much variability within the samples in a single row compared
with the variability resulting from different well configurations and
facies observations in the wells.

4.2. Conditional facies generation by GAN and its limitations

We next show results of using a GAN on this reservoir facies
generation problem. As commonly observed in the GAN literature, we
experienced a high level of instability in training with a U-Net GAN.
Fig. 9 presents the training history of the U-Net GAN. First, the gap
between the generator and discriminator losses becomes larger as the
training progresses. This indicates that it suffers from the generator-
discriminator imbalance problem. Second, the discriminator loss even-
tually converges, while the generator loss diverges towards the end of
the training. This exhibits the divergent loss problem and results in
a complete failure of the generator. Third, the loss for preserving 𝒙𝑐
is unstable and non-convergent due to the unstable training process
of the GAN. Lastly, the sample diversity loss indicates better diversity
when the loss value is lower and vice versa. Throughout the training
process, the diversity loss remains high until shortly before around 780
epochs, then the generator fails and starts producing random images.
The failure leads to a decrease in the diversity loss. It indicates that
the GAN model struggles to capture a sample diversity while retaining
good generative performance.

Fig. 10 shows conditionally-generated samples using U-Net GAN at
different training steps. The unstable training process can be seen in
the generated samples. For instance, we observe a noticeable improve-
ment in the quality of generated facies up to the 400 training epoch.
However, from the 500 epoch, the quality continues to decline until the
generated samples are barely recognizable. Generally, the GAN model
appears to face challenges in concurrently maintaining high fidelity,
preserving conditional data, and achieving sample diversity, therefore
failing to capture the posterior.

Fig. 11 presents multiple instances of generated facies conditioned
on different 𝒙𝑐 using the U-Net GAN. The generator at the training
epoch of 400 is used to generate the samples for its better performance
than the generators at the other epochs. While showing more consis-
tency than that of Fig. 10, the results still show that the generated
samples have low fidelity, considerable deviations from the ground
truths, and a lack of sample diversity due to the mode collapse. Further-
more, the generated samples exhibit a considerable sum of preservation
errors, indicating the incapability to retain the conditional data. Over-
all, the results demonstrate that the GAN model fails to capture the
posterior.

Table 1 specifies the preservation error rates of our proposed diffu-
sion model and the U-Net GAN. The preservation error rate is defined
as in Box I
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Fig. 8. Examples of multiple instances of generated facies conditioned on different conditional data 𝒙𝑐 using our diffusion model. The first and second columns represent 𝒙 (ground
truth) and 𝒙𝑐 , respectively, from the test dataset, and the remaining columns represent the conditionally generated facies. It is important to emphasize that the preservation error
maps are omitted here because conditional sample �̂� does not carry any preservation error here.

Fig. 9. Training loss history of U-Net GAN. The training process exhibits issues such as non-convergence, imbalance between the generator and discriminator, and divergent loss.

Preservation error rate =
number of different pixels between 𝒙𝑐 and argmax �̂�𝑐 for the valid pixels in 𝒙𝑐

number of valid pixels in 𝒙𝑐
,

Box I.

where the preservation error rate of zero indicates perfect preser-
vation. The results demonstrate that our diffusion model achieves the
near-perfect preservation (i.e., only 0.04% of conditional data fails to be
retained) and it significantly outperforms the U-Net GAN in retaining
conditional data, surpassing it by a factor of approximately 255 times.

To better illustrate the mode collapse phenomenon in U-Net GANs
in comparison to our proposed diffusion model, Fig. 12 shows a com-
parison between the prior distributions of the training and test datasets
along with the prior distribution predicted by our diffusion model

Table 1
Preservation error rates of our diffusion model and U-Net GAN on the test dataset.

Our diffusion model U-Net GAN

Preservation error rate 0.0004 0.1022

and that of the U-Net GAN. To visualize the prior distributions of the
training and test datasets, we first employ an argmax operation on 𝒙
across the channel dimension. This operation results in argmax 𝒙 ∈
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Fig. 10. Visualization of conditionally-generated facies samples by U-Net GAN at different training steps with the preservation error map. Here, ep. denotes epoch, and variable
𝒙 and conditioning data 𝒙𝑐 are from the test dataset.

Fig. 11. Examples of multiple instances of generated facies conditioned on different data 𝒙𝑐 using U-Net GAN The first and second columns represent 𝒙 (ground truth) and 𝒙𝑐 ,
respectively, from the test dataset, �̂� denotes the conditionally generated facies, and the last column shows the preservation error maps. It is important to highlight that we are
showcasing a total of four distinct generated samples. Nevertheless, they appear to be identical, primarily as a result of the mode collapse phenomenon that occurs during the
GAN training. Because the generated facies are identical, their corresponding preservation error maps are also identical. Hence, we present a single preservation error map on the
right-hand side.

R𝐻×𝑊 that contains integer values. Subsequently, we calculate the
average of argmax 𝒙 for all instances of 𝒙 within the training or test
dataset. The same visualization procedure is applied to visualize the
prior distributions predicted by our diffusion model and U-Net GAN,
with the only difference being the application of an argmax operation
to generated facies data. For the U-Net GAN, its generator at the 400
training epochs is used (same as above). The prior distribution contains
four main distinct colors (green, orange, blue, red) depending on
facies types, and darker colors indicate high likelihood and vice versa.
These results clearly demonstrate our diffusion model’s capability to
accurately capture the prior distribution, whereas the U-Net GAN faces

substantial challenges in this regard due to the mode collapse, leading
to severe underestimation of the variability in the generated samples.

In Fig. 12 we also show the Jensen–Shannon (JS) divergence of
the generated samples compared with the true model. Similar to the
Kullback–Leibler divergence, but non-symmetric and finite (between 0
and 1), the JS divergence here measures the probabilistic difference
between the generated and training samples. Clearly, the divergence
is much smaller for the LDM here, while the GAN gets very large JS
divergence (close to 1) at some of the facies boundaries. Even though
it is less prominent than for the GAN, the divergence for LDM shows
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Fig. 12. Comparative visualization of the prior distributions of the training and test datasets and the prior distribution predicted by our diffusion model and the U-Net GAN.
The binary-colored figure depicts the discrepancy, measured by JS divergence, between the prior distribution of the training dataset and the predicted prior distribution. At every
pixel, there exists a prior distribution encompassing various facies types, where these facies types are visually represented by distinct colors. The presence of intermediate colors
signifies a prior distribution with greater diversity. In this context, it is important to highlight that the mode collapse observed in the U-Net GAN results in a reduction of sample
diversity, analogous to the absence of those intermediate colors in the visualization.

some structure near the facies transition zones. This indicates some
underestimation in the implicit posterior sampling variability.

4.3. Ablation study

We conduct an ablation study to investigate the effects of the use of
the proposed components such as 𝐿preserv and the multi-level mapping
of 𝒛𝑐 . The evaluation is performed on the test dataset. Table 2 outlines
the specific Case (a)–(c) considered in the ablation study, and Table 3
reports 𝑝uncond𝐿LDM+ (1 −𝑝uncond)𝐿LDM,c from Eqs. (7)–(8), 𝐿preserv, and
a preservation error rate on the test set.

When analyzing these results, several key findings emerge. Firstly,
in Case (b), both 𝐿preserv and the preservation error rate exhibit a sig-
nificant increase compared to Case (a). This increase can be attributed
to the fact that the denoising model in (b) was not explicitly trained
to preserve the conditional data, resulting in a notable degradation in
preservation quality. Case (c) sheds light on the effectiveness of the
multi-level mapping, comparing 𝐿preserv and the preservation error rate
from the baseline Case (a). It emphasizes the positive impact of the
multi-level mapping approach on preservation. Overall, the ablation
study reveals that each component in our methodology plays a vital
role in enhancing the overall preservation capacity of the conditional
sampling.

5. Conclusion

We have introduced a novel approach for conditional reservoir
facies modeling employing LDM. Experimental results show exceptional
abilities to preserve conditional data within generated samples while
producing high-fidelity samples. Our novelties lie in the proposals to
enhance the preservation capabilities of LDM. Throughout our exper-
iments, we have demonstrated the robustness and superiority of our

Table 2
Ablation study cases with respect to the novel and essential components in stage 2. The
signs of o and x indicate the use of the item described in the corresponding column
name, where o and x denote using and not using, respectively. In the case of (c),
instead of employing multi-level mapping for 𝒛𝑐 , it takes a straightforward route to
integrate 𝒙𝑐 into the denoising U-Net. This integration is achieved through a simple
concatenation of 𝒛𝑐 and 𝒛𝑡, forming the input denoted as [𝒛𝑡 , 𝒛𝑐 ] for the denoising
U-Net, where [.] represents the concatenation operation.

𝐿preserv Multi-level mapping of 𝒛𝑐
(a) Base o o
(b) − 𝐿preserv x o
(c) − Multi-level mapping of 𝒛𝑐 o x

diffusion-based method when compared to a GAN-based approach,
across multiple aspects including fidelity, sample diversity, and con-
ditional data preservation. Furthermore, we have presented the critical
limitations of the GAN approach, which result in compromised fidelity,
limited sample diversity, and sub-optimal preservation performance.

Overall, our work opens up a new avenue for conditional facies
modeling through the utilization of a diffusion model. The results
indicate some underestimation in the posterior samples, which can
possibly improved by more nuanced training or refined loss functions.
As future work, we aim to study the statistical properties of the LDM
in detail on various geostatistical models, study conditioning to other
data types, and extend our method for 3D facies modeling.

Conditioning to seismic data can be done in various ways. For
instance by introducing a seismic loss function (possibly including
convolution effects in the seismic forward model) to the training loss
and the reconstruction loss. Expanding our method for 3D facies mod-
eling may appear straightforward by merely substituting 2D convolu-
tional layers with their 3D counterparts. However, dealing with 3D
spatial data presents inherent complexities stemming from its high-
dimensional nature. This can manifest in various challenges, including
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Table 3
Effects of the use of 𝐿preserv and multi-level mapping of 𝒛𝑐 for the ablation study cases.

(a) Base (b) − 𝐿preserv (c) − Multi-level mapping of 𝒛𝑐
𝑝uncond𝐿LDM + (1 − 𝑝uncond)𝐿LDM,c 0.02444 0.02306 0.02618
𝐿preserv 0.00029 0.00643 0.00082
Preservation error rate 0.00044 0.00442 0.00146

high computational demands and the difficult learning of prior and
posterior distributions. Therefore, it may need to employ techniques
like hierarchical modeling. This can involve employing a compact la-
tent dimension size for sampling, followed by an upscaling mechanism
similar to super-resolution, in order to enhance the feasibility and
effectiveness of the 3D modeling. Moreover, incorporating additional
conditional data, such as seismic information, into the sampling process
can be achieved through the use of cross-attention mechanisms, as
introduced in the original LDM.

CRediT authorship contribution statement

Daesoo Lee: Writing – review & editing, Writing – original draft, Vi-
sualization, Validation, Software, Methodology, Investigation, Formal
analysis, Data curation, Conceptualization. Oscar Ovanger: Writing
– review & editing, Writing – original draft, Validation, Resources,
Methodology, Formal analysis, Conceptualization. Jo Eidsvik: Writing
– review & editing, Writing – original draft, Visualization, Supervision,
Resources, Methodology, Funding acquisition, Formal analysis, Concep-
tualization. Erlend Aune:Writing – review & editing, Writing – original
draft, Validation, Supervision, Resources, Methodology, Funding acqui-
sition, Formal analysis, Conceptualization. Jacob Skauvold: Writing –
review & editing, Resources, Methodology, Conceptualization. Ragnar
Hauge: Writing – review & editing, Methodology, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

We would like to thank the Norwegian Research Council for fund-
ing the Machine Learning for Irregular Time Series (ML4ITS) project
(312062), the GEOPARD project (319951) and the SFI Centre for
Geophysical Forecasting (309960).

Code availability section

The source code is available on github.com/ML4ITS/Latent-Diffusi
on-Model-for-Conditional-Reservoir-Facies-Generation

Contact: daesoo.lee@ntnu.no
Hardware requirements: a sufficient GPU device for training a deep

learning model with the PyTorch library. We used a single NVIDIA
GeForce RTX 3060.

Program language: Python

Appendix A. Dataset

Our test images are vertical 2D slices through a shoreface deposit in
a wave-dominated shallow-marine depositional environment. The cross
section is taken along the dip direction, with the proximal or landward
side to the left in the image, and the distal or seaward side to the
right. The shoreface deposit consists of sediment packages referred to as
bedsets. On the landward side of the bedsets is the coastal plain, which
is coaly and of poor reservoir quality. The proximal part of each bedset
consists of shoreface sand of good reservoir quality, while the distal

part has sand interbedded with shale. The offshore region beyond the
distal edge of the bedsets has only shale.

We create realizations using the rule-based object model GEOPARD,
which was described by Scotti et al. (2022). This model sequentially
stacks bedsets in a way that mimics the depositional process. Bedset-
scale description is appropriate for reservoir facies modeling (Isla et al.,
2018). The trajectory of the shoreline is a function of bedset progra-
dation and aggradation, in other words how much the bedsets build
out and build up. These, in turn, are controlled by such environmental
factors as the sea level and sediment supply. See also the article
by Ovanger et al. (2024), where a conceptually similar shoreface de-
position model is considered. GEOPARD first generates base and top
surfaces for a sequence of bedsets, and then uses these surfaces to create
a 3D grid of facies values. The data in this study consists of 2D arrays
extracted from these 3D grids. We take one slice from each 3D grid.
That is, we do not take multiple slices from the same realization. Facies
is treated as a categorical variable and one-hot encoded, as described
in Section 3.1.

The conditional data 𝒙𝑐 are generated by taking a subset of 𝒙 with
a random number of straight lines and random angles within certain
ranges. The line patterns resemble groups of deviated wells with a
common template, in other words originating from a common point
somewhere above the image. The number of lines is sampled from a
Poisson distribution with expectation four and then shifted up by one so
that the expected number of lines is five, and there is always at least one
line. Our dataset comprises 5000 facies realizations, split into training
(80%) and test datasets (20%). The full dataset is available at https://fi
gshare.com/articles/dataset/Dataset_used_in_Latent_Diffusion_Model_fo
r_Conditional_Reservoir_Facies_Generation/26892868?file=48931588.

Appendix B. Implementation details of our proposed method

B.1. Encoders and decoders:  , 𝑐 , , and 𝑐

The same encoder and decoder architectures from the VQ-VAE
paper are used and their implementations are from https://github.
com/nadavbh12/VQ-VAE. The encoder is a stack of a downsampling
convolution block (Conv2d – BatchNorm2d – GELU – Dropout) and a
subsequent residual block (GELU – Conv2d – BatchNorm2d – GELU –
Dropout – Conv2d). The short notations are taken from the PyTorch
implementations. The architecture of the decoder is the inverse of
the encoder’s. Its upsampling convolutional layer is implemented with
(Upsample(mode = ‘nearest’) – Conv2d). In the encoding process, the
spatial size halves and the hidden dimension doubles after every down-
sampling block, and the bottleneck dimension (i.e., dimension of 𝒛 and
𝒛𝑐) is set to 4, following Rombach et al. (2022).

The stack size determines a downsampling rate. For instance, a
single stack corresponds to a downsampling rate of 2. In our ex-
periments, we use a single stack because we observed that a higher
downsampling rate leads to higher loss of input information, resulting
in an inadequate reconstruction of 𝒙𝑐 . This inadequacy suggests that
𝒛𝑐 fails to fully capture the information contained in 𝒙𝑐 , ultimately
leading to a deficiency in preserving 𝒙𝑐 within a generated sample. In
addition, Rombach et al. (2022) demonstrated that a low compression
rate is sufficient for LDM to generate high-fidelity samples.

In the naive form of  and 𝑐 , the value ranges of 𝒛 and 𝒛𝑐 are not
constrained. However, the diffusion model 𝑔𝜽 is typically designed to
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receive a value ranging between −1 and 1. For instance, image data is
scaled to range between −1 and 1 to be used as the input. To make
𝒛 and 𝒛𝑐 compatible with the diffusion model, we normalize them as
𝒛∕ max(|𝒛|) and 𝒛𝑐∕ max(|𝒛𝑐 |), respectively.

B.2. U-Net

Two U-Nets are used in our proposed method — one for 𝑔𝜽 and the
other for processing 𝒛𝑐 . The two U-Nets have the same architecture to
have the same spatial dimensions for the multi-level mapping. We use
the implementation of U-Net from here.1 Its default parameter settings
are used in our experiments except for the input channel size and
hidden dimension size. To be more precise, we use in_channels
(input channel size) of 4 because it is the dimension sizes of 𝒛 and 𝒛𝑐
and dim (hidden dimension size) of 64.

B.3. Latent diffusion model

LDM is basically a combination of the encoders, decoders, and
DDPM, where DDPM is present in the latent space. We use the imple-
mentation of DDPM from here.2 Its default parameter settings are used
in our experiments except for the input size and denoising objective
for which we use the prediction of 𝒛0 instead of 𝝐, as described in
Section 2.4.

B.4. Optimizer

We employ the Adam optimizer (Kingma and Ba, 2015). We con-
figure batch sizes of 64 and 16 for stage 1 and stage 2, respectively.
The training periods are 100 epochs for stage 1 and 20 000 steps for
stage 2.

B.5. Unconditional sampling

The conditional sampling is straightforward as illustrated in Fig. 6.
For the unconditional sampling, we replace 𝒛𝑐 with mask tokens,
typically denoted as [𝙼𝙰𝚂𝙺] or [𝙼] (Lee et al., 2023, 2024). The role of
the mask token is to indicate that the sampling process is unconditional.
The mask token is a learnable vector trained in stage 2 by minimizing
𝐿LDM(𝒛, 𝑔𝜃) in 𝐿stage2.

Appendix C. Implementation details of U-Net GAN

We implement U-Net GAN, following the approach outlined in its
original paper (Zhang et al., 2021). Two key hyperparameters govern
the weighting of loss terms in this implementation: one for preserving
conditional data (content loss) and the other for ensuring sample
diversity (diverse loss). We maintain the same weights as specified in
the paper, with a value of 0.05 for the diverse loss and 100 for the
content loss. For optimization, we employ the Adam optimizer with a
batch size of 32, a maximum of 750 epochs, and a learning rate set to
0.0002. The implementation is included in our GitHub repository.

To enhance the training of GANs, several techniques like feature
matching, historical averaging, and one-sided label smoothing have
been proposed. These methods, detailed in Salimans et al. (2016), are
primarily aimed at stabilizing the training process. However, in our
approach, we have chosen not to implement these techniques. Instead,
we focus on maintaining the fundamental structure of the GAN model
to assess its performance in a basic form.

1 https://github.com/lucidrains/denoising-diffusion-pytorch.
2 See footnote 1.

Appendix D. Pseudocode

To increase the reproducibility of our work and understanding
of our codes in our GitHub repository, we present a pseudocode of
the training process of our method in Algorithm 1 for stage 1 and
Algorithm 2 for stage 2. In the pseudocodes, we provide a more detailed
specification of .

Algorithm 1 Pseudocode of the training process of the proposed
diffusion model (stage 1)
while a maximum epoch is not reached do

sample x from X ⊳ X denotes a training dataset. In practice, a
batch of x is sampled.

x𝑐 ← stochastically extracting conditional well data from x

z, z𝑐 ← (x), 𝑐 (x𝑐 )
x̃, x̃𝑐 ← softmax((z)), softmax(𝑐 (z𝑐 ))

𝐿stage1 ← 𝐶 𝐸(x, x̃) + 𝐶 𝐸(x𝑐 , x̃𝑐 )

update  , 𝑐 , , and 𝑐 by minimizing 𝐿stage1
end while

Algorithm 2 Pseudocode of the training process of the proposed
diffusion model (stage 2)

load the pretrained  , 𝑐 , , and 𝑐 and freeze them.
randomly initialize 𝑔𝜽 and 𝑔𝝓
while a maximum epoch is not reached do

sample x from X
x𝑐 ← stochastically extracting conditional well data from x

z, z𝑐 ← (x), 𝑐 (x𝑐 ) ⊳ z = z0
z𝑡 ← forward diffusion process applied to z0 ⊳ adding noise to

z0
if 𝑟 ≤ 𝑝uncond then ⊳ 𝑟 ∼ 𝑈 (0, 1) where 𝑈 denotes a uniform

distribution
ẑ0 ← 𝑔𝜽(z𝑡, 𝑡) ⊳ unconditional generation
𝐿LDM ← ‖z0 − ẑ0‖22
𝓁LDM ← 𝐿LDM

else
ẑ0 ← 𝑔𝜽(z𝑡, 𝑡, 𝑔𝝓(z𝑐 )) ⊳ conditional generation
𝐿LDM,𝑐 ← ‖z0 − ẑ0‖22
𝓁LDM ← 𝐿LDM,𝑐

end if

x̂ = softmax((ẑ)) ⊳ ẑ = ẑ0
x̂𝑐 ← retrieving the valid pixel locations in x𝑐 from x̂
𝐿preserv ← 𝐶 𝐸(x𝑐 , x̂𝑐 )

𝐿stage2 ← 𝓁LDM + 𝐿preserv

update 𝑔𝜽 and 𝑔𝝓 by minimizing 𝐿stage2
end while

Appendix E. Additional experimental results

In continuation of Fig. 7, additional examples of the transitions in
the conditional denoising process are presented in Fig. 13.

Data availability

The dataset is publicly available on https://figshare.com/articles/
dataset/Dataset_used_in_Latent_Diffusion_Model_for_Conditional_Reserv
oir_Facies_Generation/26892868?file=48931588.
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Fig. 13. (Continuation of Fig. 7) Additional examples of the transitions in the conditional denoising process.
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Abstract
There has been much interest recently in implicit artificial intelligence (AI)-based
approaches for geostatistical facies modeling. New generative machine learning con-
structions such as latent diffusion models (LDMs) appear to be competitive with
traditional geostatistical approaches for facies characterization. Going beyond visual
inspection of predictions, this study examines properties of the statistical distribution of
samples generated by an LDM trained to generate facies models. The study uses a tra-
ditional truncatedGaussian randomfield (TGRF)model as a reference data-generating
process and as the ground truth for benchmarking the LDM results. The distributions
of realizations drawn from the LDM and TGRF models are compared using metrics
including bias, variance, higher-order statistics, transiograms and Jensen–Shannon
divergence for both marginal and joint (volume) distributions. Comparisons are made
with and without conditioning on facies observations in wells for both stationary and
nonstationary TGRF models with different covariance functions. The observed distri-
butional differences are modest, and LDMs are regarded as a very promising approach
here. Even so, some systematic artifacts are observed, such as underrepresentation of
variability by the LDM.Moreover, the performance of the LDM is found to be sensitive
to the training data.

Keywords Latent diffusion models · Facies modeling · Truncated Gaussian random
fields · Statistical evaluation of generative model

1 Introduction

Crucial decisions in the oil and gas industry often rely on multiple realizations of
reservoir models. The toolkit for generating such realizations is still growing. It
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encompasses traditional geostatistical modeling approaches such as truncated Gaus-
sian random fields (TGRF) (Matheron et al. 1987; Mannseth 2014), and object-based
models (Haldorsen and Damsleth 1990; Manzocchi and Walsh 2023), training image-
based models such as multiple-point statistics (Strebelle 2002), process-based models
(Lopez et al. 2009), and rule-based models (Pyrcz et al. 2015). Useful overviews can
be found in the books by Caers (2005) and Pyrcz and Deutsch (2014, chapter 4). As
different as these approaches to reservoir modeling are, they all balance geological
realism with the ability to condition realizations to well data.

Asmachine learning research progresses and computing resources become increas-
ingly available, new research prospects are emerging for geostatistical simulation
techniques. The application of generative adversarial networks (GANs) (Goodfellow
et al. 2020) to geomodeling problems has produced much research interest (Chan and
Elsheikh 2019; Zhang et al. 2019), but GANs can be difficult to train due to issues
such as mode collapse and instability in training (Salimans et al. 2016; Lucic et al.
2018). In recent years, denoising diffusion probabilistic models (DDPMs) (Ho et al.
2020) have excelled in various applications, including image generation (Lugmayr
et al. 2022), time series generation and forecasting (Kollovieh et al. 2023), and audio
generation (Liu et al. 2023).

This work conducts a thorough study of the statistical properties of the recent work
of Lee et al. (2024) on the generation of facies realizations in a reservoir modeling
context using a latent diffusion model (LDM) (Rombach et al. 2022). An LDM is a
version of a DDPM where the denoising process happens in a learned latent space
that efficiently compresses the data. The results obtained by Lee et al. (2024) were
encouraging in that (i) the generated LDM realizations looked indistinguishable from
training data, (ii) conditional realizations could be made to match hard data of facies
in wells almost perfectly, without training the LDM on specific observation locations,
and (iii) the quality of the facies realizations produced by the LDM outperformed an
existing conditional GAN model (of comparable computational requirements) by a
significant margin.

The main contribution of this article is in examining the distributional properties of
realizations obtained by LDMs. The idea is to compare statistics of LDM realizations
with the distributional properties of the traditional geostatistical TGRF model. It is
straightforward to draw ample training data using TGRF. Moreover, one can sample
exact conditional realizationswith theTGRFmodel, and it is hencepossible to compare
the implicit results of LDM with those of the true explicit TGRF solution.

In this paper, the LDM and TGRF samples are compared for two separate cases:
The first case is inspired by shoreface geometry, and the TGRF has a trend that imposes
large-scale structures. The second case resembles a laterally heterogeneous structure
with a stationary TGRF. In each case, a set of realizations is drawn from the TGRF and
used to train the LDM. A different set of realizations is then drawn from the trained
LDMandcompared to a fresh set drawn from theTGRF.TheLDM-TGRFcomparisons
are made both with and without conditioning to facies observations in wells.

Several metrics are used to compare sets of TGRF and LDM realizations. For
reliable detection of distributional differences, metrics based on first-, second-, and
higher-order statistics are used. These comparativemetrics are used to gain insight into
the characteristics, benefits and limitations of black-box generative AI models (LDM
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in this case) by evaluating them against established models with known sampling
behavior (TGRF in this case). If a model’s properties cannot be defended in the context
of a simple synthetic case, it would be unwise to trust it in real-world scenarios.

The remained of this article is organized as follows. Section2 presents the LDM,
Sect. 3 outlines the TGRF reference models, and Sect. 4 describes the metrics used
to compare sets of realizations. Section5 outlines the first case study, inspired by
a shallow marine shoreface environment where large-scale structure is present, and
the TGRF model is nonstationary. Section6 follows with the second case study set
in a laterally heterogeneous environment with a stationary TGRF model. Section7
concludes the article by recapitulating the main findings.

2 Latent DiffusionModel

LDMs represent a significant advance in generative models. Like DDPMs, LDMs are
capable of producing high-quality output of various types such as images, audio, and
text. LDMs differ from DDPMs in that rather than working directly with the input
data, they work in a latent space. This means that LDMs compress data into a more
compact representation before initiating the diffusion process, effectively reducing
computational complexity, meaning that output can be generated more efficiently.

This section provides a brief description of the LDM studied in this article. Readers
should consult Rombach et al. (2022) for details about LDMs in general and Lee et al.
(2024) for specifics about the facies-generating LDM studied here.

2.1 Training and Using the LDM

The LDM considered in this article generates facies realizations which are represented
as images. LDMs are trained and used in three distinct stages that are summarized in
what follows and in Fig. 1.

2.1.1 Training the Autoencoder (Stage 1 Training)

The autoencoder comprises an encoder network, E , and a decoder network, D. The
network parameters in the decoder and encoder are denoted by θ . The encoder com-
presses a high-resolution image, d, into a lower-dimensional latent representation,
z = E(d), retaining salient features. The decoder attempts to reconstruct the input
image d from the latent representation z, resulting in the reconstruction d̃ = D(z),
found by minimizing a reconstruction loss function that has been specified in advance.
The mean square difference between d̃ and d is a reasonable choice of reconstruc-
tion loss function. This training stage establishes the latent space where the denoising
diffusion process will take place.

2.1.2 Training the Denoising Model (Stage 2 Training)

Freezing the encoder and decoder from stage 1, the denoising diffusion part of the
LDM is based on a sequential diffusion process whereby the latent representation, z,
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Fig. 1 Illustration of training and sampling from the latent diffusion model

is progressively degraded by the repeated addition of noise ε in a sequence of diffusion
steps. The number of steps, T , between the original representation and the fully noised
one is typically on the order of 1,000. In this training stage, the denoising model, εϕ ,
learns to reverse the noise addition process by estimating the noise added in each
diffusion step. To train the denoising model, the latent representation is noised at dif-
fusion steps t to obtain the noised latent representation. Then the learnable parameters
(network weights) ϕ are updated so that the estimated noise is close to the actual noise
added,

εϕ(zt , t) ≈ εt . (1)

Due to its dependence on t , the denoising model needs to be exposed to examples at
all steps in the diffusion process.
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2.1.3 Sampling by Denoising

Once the LDM has been trained, it can generate samples in three steps: (i) Initial-
ization of the process with a latent-space noise vector, zT , sampled from a Gaussian
distribution; (ii) repeated application of εϕ from t = T to t = 0 to progressively
denoise zT , running the diffusion process in reverse to obtain the fully denoised latent
representation, z0; and (iii) back-transformation of z0 from the latent space to the
original data space using the decoder D, producing d̃ = D(z0).

2.2 LDM for Facies Modeling

It is important to recognize the challenges that arise when applying LDMs designed
for image generation to facies generation. Whereas image data are usually treated
as continuous, facies data are categorical. The LDM proposed by Lee et al. (2024) is
specifically designed towork on facies realizations rather than images. This adaptation
involves several key modifications to the conventional LDM framework.

First, during the training, a cross-entropy loss is used instead of the mean square
error loss, which is ill-suited for categorical data. Second, to improve the generation of
conditional facies and ensure the preservation of conditional data, two U-Nets (Ron-
neberger et al. 2015) are utilized. The first U-Net handles unconditional facies, while
the second accounts for facies observations, leading to two distinct reconstruction
loss functions for unconditional and conditional facies reconstruction. The first U-
Net learns to perform the denoising process. This is enough to perform unconditional
sampling. To enable conditional sampling, latent representations of facies observa-
tions are extracted using the second U-Net. These representations are then used in the
first U-Net to condition the denoising process.

3 Truncated Gaussian Random Fields

This section presents the TGRF models used in this paper. A realization of a TGRF
is obtained by first generating a GRF and then thresholding the result at each location
(see, e.g., Armstrong et al. (2011) or Lauzon and Marcotte (2022)). In this paper,
there are two threshold levels on the real line, giving three different facies classes.
With a relatively small amount of conditioning data, the rejection sampler is used
for conditional simulation. More advanced sampling methods are required for larger
data sizes (see, e.g., Chopin (2011)). The TGRF model is used as a reference data-
generating process to create training data for the LDM. Two different cases are studied
and outlined next.

3.1 Shoreface Dataset

The shoreface dataset includes a trend that represents geological features such as
parasequences or bedsets (Eide et al. 2015; Ovanger et al. 2024). It is related to the
dataset used by Lee et al. (2024). The facies observations for this dataset are arranged
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Fig. 2 TGRF and LDM realizations for the shoreface case (unconditional)

in vertical sections, analogous to well data. This dataset is particularly important for
assessing the LDM’s capacity to handle complex, continuous structures and translate
those into the conditional generation process.

The dataset was created based on a GRF with a mean function μ(x, y) =
−0.0003x + 0.001y, and a squared exponential covariance function (Müller et al.
2022), with variance parameter σ 2 = 0.005 and length-scale parameter 25. Real-
izations are generated on an nx × ny grid defined by x = y ∈ {0, 1, ..., 127}, so
nx = ny = 128. The truncation thresholds are set at [0.15, 0.75], which gives the
complete specification

s(x, y) ∼ N
(
μ(x, y),ΣSE(x, y, x ′, y′)

)
, where x, y ∈ {0, 1, 2, ..., 127},

d(x, y) =

⎧
⎪⎨

⎪⎩

0 if s(x, y) < 0.15,

1 if s(x, y) ≥ 0.15 and s(x, y) < 0.75,

2 if s(x, y) ≥ 0.75,

(2)

whereΣSE(x, y, x ′, y′) is the squared exponential kernel function. Figure2 illustrates
examples of these realizations, d. The TGRF dataset employed for training the LDM
comprised 5,000 samples.

Conditional data were obtained by first sampling based on Eq.2, and then extracting
a single column, d(64, y), from the middle of the realization. The data are illustrated
in Fig. 3. In the rejection sampler (Casella et al. 2004), the match of column values at
x = 64 determined whether a realization was retained. This process continued until
1,000 suitable realizations were obtained from the conditional TGRF model.

3.2 Laterally Heterogeneous Dataset

The laterally heterogeneous dataset was generated similarly to the shoreface dataset,
with dimensions nx = ny = 128, but with the mean function being zero everywhere,
μ(x, y) = 0, and with the truncation thresholds set at [−0.43, 0.43]. This second
dataset could be seen as a horizontal slice of a laterally heterogeneous reservoir. It
was also constructed to increase the degrees of freedom in the TGRF realizations in
order to see how the LDM performs in a situation where there is no large-scale pattern
in the model. This dataset was constructed using three different covariance functions
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Fig. 3 Shoreface data values

Table 1 Covariance functions used to generate laterally heterogeneous datasets

Covariance function Variance Decay parameter Smoothness parameter

Squared exponential 1.0 24.5 ∞
Exponential 1.0 20.0 1/2

Matérn 1.0 21.9 3/2

Fig. 4 TGRF and LDM realizations for laterally heterogeneous case (unconditional)

(Table 1). Even though these covariance functions have the same effective correlation
length (0.05 correlation at distance 60), they differ in the smoothness they impose on
the resulting random field.

Figure4 illustrates examples of unconditional realizations from both the TGRF
model and theLDMmodel, andFig. 5 displays the conditioning data. In this dataset, the
conditioning data were individual grid cells at random locations. This could represent
multiple wells seen in a map view, which is not an uncommon conditioning task in
geological settings. Conditional realizations of the TGRF were obtained by rejection
sampling, as described for the shoreface case.
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Fig. 5 Data values for the
laterally heterogeneous case

4 ComparisonMetrics

Multiple metrics are used to compare realizations across the LDM and TGRF models.

4.1 First-Order Statistics

4.1.1 Cell-Wise Probability

Considering a grid with three possible facies in each cell, the occurrences of each
facies are counted to determine the marginal probabilities.

4.1.2 Volume Fraction

Volume fraction refers to the proportion of volume in each realization occupied by a
particular facies. Specifically,

Vi j =
∑nx−1

x=0

∑ny−1
y=0 I (d j (x, y) = i)

(nxny)
, (3)

represents the volume fraction of facies i in realization j . Distributions of volume
fractions across both unconditional and conditional realizations offer insight.

4.1.3 Jensen–Shannon Divergence

The Jensen–Shannon divergence (JSD) provides a popular way to compare probabil-
ity distributions. It is the average of the Kullback-Leibler (KL) divergences computed
bidirectionally between two distributions. This symmetrizes the result, avoiding the
asymmetry of the KL divergence. This method is applied to compare multinomial
cell-wise probabilities between the LDM and TGRF realizations. For each cell, the
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trinomial distribution for facies is considered. The computation is performed indepen-
dently for each cell and yields a comprehensive map of the JSD for both unconditional
and conditional datasets. The formulation of the JSD is

J SD(x, y) = 1

2
K LD (PTGRF (x, y)‖PLDM (x, y))

+1

2
K LD (PLDM (x, y)‖PTGRF (x, y)) ,

= 1

2

3∑

i=1

Pi
LDM (x, y) log

(
Pi
LDM (x, y)

Pi
TGRF (x, y)

)

+1

2

3∑

i=1

Pi
TGRF (x, y) log

(
Pi
TGRF (x, y)

Pi
LDM (x, y)

)

, (4)

where x, y ∈ {0, 127} and Pi· (x, y) is the probability of facies type i at location (x, y)
for LDM and TGRF. JSD values range from 0 (complete overlap of distributions) to
1 (complete mismatch).

4.2 Second-Order Statistics

The metrics discussed so far all work on a cell-wise basis. However, when dealing
with geological objects, one is often interested in pairwise dependencies. This can,
for instance, be captured by correlations or variograms. Here, a second-order statistic
specifically tailored for discrete realizations is used.

Empirical transiograms (Li 2006; Madani et al. 2019) specify transition probabili-
ties between facies outcomes i and i ′ as a function of the lag distance h = (hx , hy),
and can be written as

P[i,i ′](h) =
∑

(x,y)∈S 1(d(x, y) = i and d(x + hx , y + hy) = i ′)
∑

(x,y)∈S 1(d(x, y) = i)
, (5)

where 1(·) is the indicator function, which equals 1 when its argument is true and 0
otherwise, and S is the set of all possible spatial locations.

4.3 Higher-Order Statistics

Although first- and second-order statistics provide essential information about the
mean and variance (or correlation) of geological attributes, higher-order statistics
capture additional spatial patterns that are often inherent in geological processes.

4.3.1 Sub-Grid Patterns

The study of sub-grid patternswithin realizations and their consistency across different
datasets is closely related to multiple-point histograms (Lyster et al. 2004). Attention
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here is specifically given to 2 × 2, 3 × 3, and 4 × 4 sub-grid patterns, chosen due
to their appropriateness for the size of the realizations. Smaller grids might limit the
diversity of patterns, whereas larger ones could lead to a sparsely distributed range of
patterns. The number of potential sub-grid patterns for an n × n sub-grid with three
facies values is 3n×n .

4.3.2 Third-Order Cumulants

The empirical spatial third-order cumulant (Dimitrakopoulos et al. 2010) quantifies
asymmetry or directional dependencies in spatial data across three points. For facies
d(x, y) at location (x, y), the third-order cumulant C3(h1, h2) is given by averaging
the products of deviations from the mean across all triplets separated by spatial lags
h1 = (hx,1, hy,1) and h2 = (hx,2, hy,2),

C3(h1, h2) = 1

|N (h1, h2)|
∑

δaδbδc, δa = d(xa, ya), (6)

where the sum goes over all triplet location sets (xa, ya), (xb, yb) and (xc, yc) with
lags h1 and h2 (a set of cardinality N (h1, h2)). This cumulant captures higher-order
spatial interactions in the facies variable, and it helps detect skewed or asymmetric
structures in the spatial data.

5 Shoreface Case

5.1 First-Order Statistics

This subsection presents a comparative analysis of statistical measures for uncondi-
tional and conditional realizations using the LDM and TGRFmethods with first-order
metrics, as outlined in Sect. 4.1. The comparison begins with basic acceptance crite-
ria, including data matching and cell-wise probabilities, and then progresses to more
complex marginal metrics.

5.1.1 Data Conditioning

A primary metric in data conditioning is data matching, which evaluates how accu-
rately the generated realizations preserve conditioning data points. In the generation of
1,000 samples, 65 LDM samples failed to maintain all data points in the conditioning,
showing a maximum of two mismatching values along a vertical trajectory with 128
data points. Figure 6 displays six samples that did not perfectly match the data, high-
lighting discrepancies with a red marker. In particular, data mismatches consistently
occur during the transition from one facies to another, rather than within homogeneous
areas.
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Fig. 6 Conditional realizations from the LDM with data mismatch, highlighted by red markers for the
shoreface dataset

Fig. 7 Cell-wise probability for shoreface dataset

5.1.2 Cell-Wise Probability

The cell-wise probabilities are illustrated in Fig. 7. Distinguishing between the cell-
wise probabilities of the TGRF (Fig. 7a and c) and LDM (Fig. 7b and d) samples is
challenging. For all three facies, there are distinct areas with probabilities 0 and 1,
with transition areas in between (facies transitions). This pattern is attributed to the
dominance of the trends and transition areas reflecting the stochasticity of the samples.
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In the conditional cell-wise probability (Fig. 7c and d), there is an absence of a
transition area at x = 64. This is consistent with the observation conditions, as the
facies outcomes for that column are known, eliminating variation in the observed
section. Furthermore, for both the TGRF and LDM models, increasing thickness of
the transition area is observed moving away from the observed data, aligning with the
expectation of convergence towards prior probabilities away from observational data.

5.1.3 Volume Fraction

Empirical volume fraction probability density functions are presented in Fig. 8. In
both the unconditional and conditional cases, alignment can be observed between the
modes of the LDM and TGRF curves. This means that the average volume fractions
across all images are quite well preserved. However, a notable distinction is that the
distributions for the LDMaremuch narrower than those for the TGRF. This means that
the variances in volume fractions across realizations are significantly underestimated.
This is consistent with the general tendency of generative models to slightly under-
estimate the variance in datasets, especially apparent, for example, in GANs, where
mode collapse is a major issue (Thanh-Tung and Tran 2020). In Fig. 8, differences
between the unconditional and conditional cases are not very large, and the variances
seem to be somewhat more aligned in the conditional case (Fig. 8b). This also might
be due to the fact that the overall variance is lower for conditional realizations.

5.1.4 Jensen–Shannon Divergence

Figure9 presents the unconditional and conditional JSD between LDM and TGRF
realizations. As presented in Sect. 4.1, the JSD compares the occurrence frequencies
of facies in each cell of the grid, where 0 indicates a total overlap of frequencies, and
1 indicates a complete mismatch. In the analysis of the unconditional case, a distinct
pattern is seen, where all nonzero JSDs occur at a certain region above and below the
expected facies transitions. Interestingly, the JSD between the models is exactly zero
at transitions in the trend function where there is a probability of 0.5 for both facies
present at a transition. This means that the LDM has learned to exactly reproduce
the transition. However, the area around the transition is where the largest divergence
is observed. This is because LDM realizations have too narrow a transition region
between facies. Hence, the variance in this transitional region is underrepresented by
the LDM. The same is observed for the conditional case, although of lesser magnitude.
It is interesting to note the green line that extends from the conditioning data column.
This is because some LDM realizations are not able to preserve the conditioning data,
placing the transition one cell above the true transition and propagating this error some
cells horizontally away from the conditioning data.

5.2 Second-Order Statistics

The transiograms (Fig. 10) are largely determined by the trend in the shoreface dataset,
and the close agreement between the LDM and TGRF models can be attributed pri-
marily to this trend. The LDM results capture the trend well, with mean transiogram
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Fig. 8 Volume fraction distributions for unconditional and conditional realizations from LDM (dashed) and
TGRF (solid)

values that closely align with those of TGRF. Additionally, the two-standard-deviation
envelopes indicate that the variability between datasets is also well matched, showing
no underestimation of variance. This alignment underscores the ability of the LDM to
accurately capture both correlation structures and variability in the training data. The
U-Net architecture, known for capturing long-range dependencies through its fully
connected design, further supports this capability by effectively translating patterns
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Fig. 9 Jensen–Shannon divergence between the LDM and TGRF datasets. (Left) Unconditional. (Right)
Conditional

Fig. 10 Transiogramof unconditional realizations from the TGRFmodel and LDMon the shoreface dataset.
The blue color is associated with TGRF and red is associated with LDM
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Fig. 11 Transiogram of conditional realizations from the TGRF model and LDM on the shoreface dataset.
The blue color is associated with TGRF and red is associated with LDM

across scales (Shelhamer et al. 2014). The same analysis is extended to the condi-
tional case in Fig. 11, where the trend continues to dominate the transiograms, with
the stochastic component of the fields playing a minimal role. The high degree of
alignment in transition probabilities between LDM and TGRF further demonstrates
LDM’s reliability in reproducing the model’s correlation structure.

5.3 Higher-Order Statistics

For higher-order statistics, local patterns are considered here, starting with 2 × 2
patterns. Of the 81 possible unique patterns, only 24 are observed. The single facies
patterns are highly dominant, and occur at a frequency proportional to the volume
fractions. The frequencies of the remaining patterns for the unconditional case are
shown in Fig. 12. The histogram shows, on a logarithmic scale, the average number of
occurrences of a pattern per realization. Approximately half of the patterns occur with
a similar frequency in the LDM and TGRF models, while 10 of the sub-grid patterns
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Fig. 12 2 × 2-sub-grid pattern histogram for the unconditional LDM and TGRF model on the shoreface
dataset

Fig. 13 2 × 2-sub-grid pattern histogram for the conditional LDM and TGRF model on the shoreface
dataset

are exclusive to the TGRFmodel. This trend is consistent at the 3×3 and 4×4 scales,
where approximately half of the patterns are unique to the TGRF dataset. However,
only 0.03%of the total number of 2×2 sub-grids in the TGRF dataset aremissing from
the LDM dataset. For 3×3 sub-grids, this number is 0.05%, and for 4×4 sub-grids it
is 0.07%. Thus, while the TGRF dataset exhibits greater pattern variability, the actual
number of occurrences where this variability is not mirrored in the LDM dataset is
minuscule. The same results are seen in the conditional case, although the number of
patterns present there is smaller, as seen in the 2 × 2 case in Fig. 13.

Further investigation into patterns exclusive to the TGRF dataset provides insights
into the types of patterns the LDM model does not replicate. The most frequently
occurring patterns unique to the TGRF dataset exhibit similarities across different
scales. For instance, the second most common pattern at the 2 × 2 scale, the second
most common at the 3 × 3 scale, and the most common at the 4 × 4 scale all include
a green patch in the bottom right corner within a yellow area. Generally, patterns not
present in the LDM dataset are those where the natural order of facies is reversed (e.g.,
green above purple, yellow above green), contrasting with trends observed in training
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Table 2 Summary statistics for shoreface sub-grid patterns

Summary statistic 2 × 2 3 × 3 4 × 4 5x5

Unique unconditional LDM patterns 14 78 265 690

Unique unconditional TGRF patterns 24 153 525 1, 393

Unique conditional LDM patterns 14 73 230 583

Unique conditional TGRF patterns 21 104 338 875

Fig. 14 Conditional realizations from the LDM with data mismatch, highlighted by red markers, for the
laterally heterogeneous dataset

realizations. This highlights a limitation in the LDM’s ability to capture improbable
patterns (Table 2).

6 Laterally Heterogeneous Case

In this experiment, the realizations have larger degrees of freedom because there is
no underlying trend creating a fixed pattern. This leads to much larger variability in
possible realizations and thus a greater challenge for the LDM model. As expected,
the performance of the LDM is worse here.

6.1 First-Order Statistics

6.1.1 Data Conditioning

Figure14 displays conditional LDM realizations. Most of the 40 conditioning points
are preserved in the LDM realizations; however, many of the realizations get some of
the points wrong. In total, out of 1,000 realizations, 856 get at least one conditioning
value wrong. One particularly troublesome conditioning observation in the upper left
area of the grid has the wrong facies value in a majority of realizations.

6.1.2 Cell-Wise Probability

Figure15 shows the cell-wise probabilities of the laterally heterogeneous dataset for
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Fig. 15 Cell-wise probabilities of the laterally heterogeneous dataset
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Fig. 16 Volume fraction distributions for unconditional and conditional realizations from LDM (dashed)
and TGRF (solid)

both the unconditional and conditional states of the LDM and TGRF models. Within
the unconditional datasets, a notable artifact is observed, namely that the cell-wise
probability for facies 2 is higher in the LDM model than in the TGRF model in the
Matérn case, with an average volume fraction of 0.45 versus 0.33 in the TGRF model.
This also causes the cell-wise probabilities for facies 1 and 2 to be lower than those of
the TGRF model. Both models also show a slight fluctuation in cell-wise probability
in the grid due to Monte Carlo noise. For the conditional cell-wise probabilities, a
close alignment is observed between the two models. Nevertheless, some differences
remain, particularly in the exponential case, where the probability is more widely
spread in the TGRF case and more concentrated around the conditioning points in the
LDM case.

6.1.3 Volume Fraction

Figure16a presents the volume fraction for the unconditional case. This figure rein-
forces the observations made in the previous section, specifically regarding the
disproportionate fraction of facies 2 in theMatérn LDMmodel compared to the TGRF
for the unconditional data, along with reduced fractions of facies 1 and 2. The reason
behind the LDMmodel’s tendency to overestimate the occurrence of the middle facies
remains unclear. The underestimation of variance noted for the previous dataset is also
apparent here.

In contrast, the conditional datasets (Fig. 16b) have larger discrepancies between
the distributions, especially in the exponential case, where the fraction of facies 2 is
vastly underestimated while that of facies 1 and 2 is overestimated. This pattern is not
consistent, because LDMoverestimates the fraction in theMatérn and Gaussian cases.
There is clearly a response to the conditioning points in all cases, but the response can
differ between the LDM and TGRF models.
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6.1.4 Jensen–Shannon Divergence

The JSD is shown in Fig. 17. The unconditional case shows a low divergence for the
Gaussian data, a slightly higher divergence for the exponential case, and a high diver-
gence for the Matérn case, which is likely due to the overrepresentation of facies 2 in
the LDM. The conditional cases have regions of low and high divergence consistent
across variograms. This is expected from conditioning, typically giving low diver-
gence near the conditioning points and higher away from it. Being less smooth, the
exponential case shows higher divergence. The Gaussian case has longer regions of
high divergence than the Matérn (despite more information from neighboring cells)
close to certain conditioning points where there are high divergences (conditioning
errors). This indicates that errors or outliers propagate further in the Gaussian case.

6.2 Correlation Structures

Figure 18a, c, and e show the average transiograms for the unconditional datasets with
the two standard deviation bands. Compared with the previous dataset, the correlation
structure has not been captured as successfully here. However, this appears to be
mainly due to poor reproduction of volume fractions. As the distance increases and
correlations vanish, the transiogram converges to

∑
i pi (1 − pi ), where pi is the

marginal probability of facies i in a cell. When the probability for the most dominant
facies increases, this sum decreases. The display shows that the values level off after a
distance of 50,which is indicative of independence beyond that point. In the conditional
realizations seen in Fig. 18b, d, and f, the transiograms in the exponential case have a
larger mismatch, as the volume fraction in facies 2 is underrepresented in the LDM.
The same goes for the Gaussian case, where the transiograms converge to different
values, especially for facies 3. Conversely, in the Matérn case, the transiograms are
more aligned under conditioning.

6.3 Third-Order Cumulants

For high-order metrics (Boisvert et al. 2010; De Iaco and Maggio 2011), third-order
cumulants are studied here. In Fig. 19, they have been computed for all datasets and
for three different combinations of lags and angles. These templates are as follows:

– h1 = h2 = 3, angle = 90◦,
– h1 = h2 = 20, angle = 90◦,
– h1 = h2 = 3, angle = 135◦.

For each of the three templates, cumulants are summarized by scanning through the
realizations.

For all cases, the variances in the cumulants are lower in the conditional case.
This is especially apparent with the Gaussian variogram. This is a natural effect of
conditioning, where the conditioning points reduce the variability of the template
pattern. Since the long-range dependencies are less in the Matérn case and even less
so in the exponential case, the variance reduction effect by conditioning is less here.
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Fig. 17 JSD for zero-trend datasets. Unconditional on the left and conditional on the right
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Fig. 18 Transiograms of the lateral heterogeneous case. The blue color is associated with TGRF and red is
associated with LDM

This is captured well by the LDM in all cases. In addition, there is some discrepancy
between the LDM and TGRF cumulants in both mean and standard deviation. In the
exponential case, the LDM cumulants show much higher variation, revealing greater
spatial variability in the three-point pattern than in the TGRF. However, this is the
opposite case with the Matérn variogram, revealing no consistent pattern.
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Fig. 19 Third-order cumulants for the lateral heterogeneous datasets. Unconditional (left) and conditional
(right)

7 Conclusion

LDMs have considerable potential for high-quality facies model generation. They
outperform more traditional machine learning methodologies in reproducing intricate
geological features while honoring hard data in the form of facies observations in
wells (Lee et al. 2024). This article presented a comparative evaluation of the LDM’s
output with the TGRF reference. Using multiple metrics, the study gained insight into
the statistical properties of the distribution of LDM-generated realizations.

In the shoreface case, by most of the metrics considered, the LDM and TGRF dis-
tributions differed only slightly. There were, however, some notable distinctions. First,
the LDM favored sharper transitions, leading to underestimation of the marginal vari-
ance in transition regions. Second, the LDM underrepresented the diversity of facies
patterns at scales ranging from 2× 2 to 4× 4 grid cells. In the laterally heterogeneous
case, greater variability was observed between the realizations, and the differences
between the LDM and TGRF output were somewhat larger. First, facies volume frac-
tions were inaccurate in the unconditional case. There was too much of facies 1 in the
Matérn case and not enough of the other two. Second, the conditional LDM results
got the wrong facies in at least one cell 85% of the time.
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High-quality performance on a reference dataset does not mean that an approach
will generalize well on a different case. For LDMs, preserving connected data is
easier than preserving individual cells, because of the compression imposed by the
autoencoder. If the grid size were larger or in three-dimensional data, the compression
rate of the autoencoder would have to be higher to keep the model’s computational
requirements on a comparable level. This would likely exacerbate compression arti-
facts. Future efforts to apply LDMs to facies modeling should aim to mitigate the
issues identified here by emphasizing data preservation and accurate representation of
correlation structures.
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Abstract

This paper presents a comprehensive empirical study of Vision Transformer (ViT) models for conditional sample generation
of binary images. The performance of ViT-based samplers is evaluated against an exact Variable Elimination Algorithm (VEA)
baseline for Markov random field models across a suite of statistical and structural metrics, including marginal distributions,
sample log-likelihoods, covariance structures, pattern frequencies, and pointwise structural similarity. The results demonstrate that
ViT sampling models successfully capture large-scale spatial structures and respect conditioning constraints, achieving visually
plausible samples with significantly improved computational efficiency and flexibility. However, the analysis also reveals statistical
limitations: ViT models exhibit systematic biases and misunderstand correlation structure, simultaneously overconditioning around
observed pixels (creating excessive long-range correlations) while undersmoothing elsewhere (correlations too short). Temperature
adjustment present a problematic trade-off, improving correlation lengths in unconditioned regions while amplifying conditioning
biases. While maintaining appropriate distributional variance, ViT samples are systematically shifted toward lower-probability
regions. These findings highlight both the promise of ViTs for efficient conditional sampling and the importance of comprehensive
statistical evaluation beyond visual quality.

Index Terms

Conditioning problems, Markov random fields, Vision Transformer, generative models, image inpainting, explainable AI.

I. INTRODUCTION

Conditioning problems involving spatially distributed categorical image data are ubiquitous in science and engineering. A
prime example that motivates this work is that of subsurface facies modeling in geoscience, where one aims to infer a discrete
geological field (e.g., rock types) from sparse observations such as well data or outcrop measurements [1].

Given observations d, the goal is then to estimate a high-dimensional field x = [x1, . . . , xN ]T defined on an N -pixel grid,
where each xi is a discrete class label. For characterizing the conditional distribution p(x | d), one combines prior knowledge
p(x) with the constraints imposed by the data. Here p(x) encodes spatial continuity and geological patterns (e.g., through
training images or Markov random fields (MRF) models). This categorical conditioning problem is inherently challenging: x
consist of combinatorial-size sets of discrete variables which exhibit complex spatial dependencies. Conventional gradient-based
methods are not applicable because derivatives with respect to discrete classes are undefined, necessitating either brute-force
search in a high-dimensional combinatorial space or stochastic sampling strategies.

Bayesian statistical sampling techniques such as Markov chain Monte Carlo (MCMC) are principled approaches to sample
from p(x|d) assuming a prior that can be evaluated up to a normalizing constant. In theory, MCMC can asymptotically
produce samples from the posterior distribution. However, applying MCMC to large categorical image models with realistic
prior complexity faces severe difficulties. The state space grows as CN for C discrete classes, leading to prohibitively slow
convergence. Multi-modal or geologically-constrained distributions exacerbate the problem, with slow-mixing Markov chains
often trapped in a single posterior mode [2]. Even advanced schemes such as annealing or adaptive importance sampling
struggle with this curse of dimensionality [3], [4], [5]. The challenges of Bayesian conditioning for such models motivates
alternative more efficient sampling approaches.

Recent years have seen the adoption of generative AI methods for spatial modeling problems. Generative adversarial networks
(GANs) [6], variational auto-encoders (VAEs) [7], and diffusion models [8] have demonstrated the ability of generative AI
models to learn high-dimensional distributions and produce realistic samples quickly. These models can serve as powerful priors
or proposal generators: for instance, a GAN trained on geological examples can generate facies realizations that honor learned
patterns [5], while VAEs and diffusion models enable efficient generation via latent space manipulation [9]. The key advantage
is computational efficiency – once trained, these models generate diverse samples in a single forward pass (GAN/VAE) or short
iterative refinement (diffusion), bypassing MCMC’s slow iterations. Moreover, deep generative models can capture intricate
spatial distributions beyond traditional parametric priors [10], [11].

Despite their promise, current generative AI methods have notable shortcomings for conditional sampling in a Bayesian
context. First, most deep generators are black-box samplers without explicit probability densities. GANs learn to mimic p(x)
without providing likelihoods, making it impossible to evaluate p(x|d) rigorously [6], [12]. VAEs yield approximate likelihoods,
but often produce blurry samples and underestimate variability [13], [14]. Diffusion model likelihoods, while theoretically
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defined, are often computationally intractable [15], [16]. This lack of tractable likelihoods hinders Bayesian integration where
samples must be weighted by their likelihood probability [17]. Second, conditioning these models on arbitrary observation data
d is inflexible. Most require specialized architectures or training procedures for each conditioning scenario [18], [19]. If the
spatial arrangement or type of conditioning changes (e.g., different well locations), models typically require retraining [20],
[21]. This geometry-dependent conditioning severely limits practical applicability.

Vision Transformers (ViTs) offer a promising alternative that addresses these limitations. When used autoregressively, ViTs
factorize p(x) as p(x1)

∏N
i=2 p(xi | x1, . . . , xi−1) and model the expression with a transformer that sequentially predicts tokens

[22], [23], [24]. This provides two crucial advantages: (1) exact log-likelihood computation for any image x by multiplying
conditional probabilities, enabling rigorous evaluation of p(x|d) and proper uncertainty quantification [25]; (2) statistically
grounded training via maximum likelihood, ensuring the model can approximate the true distribution as training data increases
[26].

Beyond autoregressive decoding, transformers offer conditioning flexibility through masked token modeling. A ViT trained
to predict randomly masked tokens (like MaskGIT [22]) develops bidirectional predictive capability – it learns to fill missing
parts by attending to surrounding pixels in all directions [27], [28]. This enables a single model to handle arbitrary conditioning
patterns without architectural changes. Given observed pixels xO at locations O, the transformer naturally generates p(xU |
xO,d) for unobserved locations U = {1, . . . , N} \ O by iteratively sampling masked tokens. Any geometry of observed vs.
unobserved locations can be accommodated by the same model, greatly increasing flexibility for practical problems where data
locations vary between cases [29], [30].

In this paper, we present a comprehensive empirical study of ViTs for conditional sampling in the situation with binary
images. We focus on a test domain where the ground truth distribution is known analytically, allowing direct evaluation of
the ViT sampler’s statistical performance. Using a binary facies model with well-defined p(x) and p(x|d) for which we can
draw samples via specialized variable elimination algorithm (VEA) [31], we quantitatively assess how closely the transformer’s
learned distribution matches the ground truth. We report comparisons of sample statistics, spatial connectivity measures, and
posterior log-likelihoods between ViT-generated and true samples, using cross-entropy as a rigorous measure of model accuracy.
Our results examine whether ViTs suffer from mode collapse or estimation bias, how well they quantify uncertainty, and how
performance scales with training data and model size. These findings suggest that ViTs can achieve fast, flexible conditional
sampling without sacrificing statistical consistency, making them a promising direction for high-dimensional spatial modeling
problems in geoscience and beyond.

In Section II we introduce the methodology for creating the VEA and ViT samples. In Section III we evaluate the ViT
samples against the ground-truth VEA samples. Lastly, in Section IV we conclude the findings of this work and propose future
research avenues.

II. METHODOLOGY

We propose a ViT framework for conditional sampling of binary spatial images, and compare its performance to a baseline
using the VEA on a Markov random field. In this section, we detail the ViT architecture and training, the MRF model and
VEA sampling method, and the conditional sampling procedure. Hyperparameters for both methods are summarized in Table
I and Table II.

A. Vision Transformer Architecture
Our conditional sampler is a ViT tailored for discrete spatial data. Figure 1 illustrates a single forward pass of the model

during both training and inference phases.
The architecture comprises an embedding layer followed by 2 Transformer encoder layers, each with 2 self-attention heads

and 64-dimensional token embeddings. The final layer with softmax produces a categorical distribution on the next token; the
vocabulary has 5, 462 distinct symbols, which amounts to approximately 8% of the possible 216 patch tokens.

a) Training procedure.: During training, a 64×64 binary image is partitioned into a sequence of 4×4 patches, creating
256 patch tokens. A random subset of patches are masked by setting all pixel values to 0.5 (shown in gray in the figure). Each
patch (both masked and unmasked) is linearly embedded into a 64-dimensional continuous vector space, producing a sequence
of learnable token embeddings.

The sequence of embeddings is processed through 2 transformer encoder layers, each containing 2 self-attention heads. Each
encoder layer consists of multi-headed self-attention with relative positional encoding added to attention scores, followed by
add-and-norm, a feed-forward network, and a final add-and-norm layer. The transformer outputs a sequence of contextually-
aware 64-dimensional representations where each patch embedding has attended to all other patches in the sequence.

A linear transformation layer maps the 64-dimensional embeddings to vocabulary logits: R256×64 → R256×v , where v =
5, 462 is the vocabulary size representing all possible 4×4 binary patch patterns. The logits represent unnormalized log-
probabilities that can be converted to conditional probabilities via softmax.

b) Inference procedure.: The trained model performs conditional generation by autoregressively sampling patches one
at a time from the learned conditional distributions, starting from a set of observed patches and iteratively filling in missing
regions by sampling from Pθ(xj | x\M) until the entire image is completed.
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Fig. 1: Vision Transformer architecture for masked patch modeling. The model processes 64×64 binary images partitioned
into 4×4 patches through embedding, transformer layers, and vocabulary projection to predict masked patches during training
and generate complete images during inference.

c) Relative positional encoding in self-attention.: Instead of adding absolute position embeddings to the token vectors,
we use a learned relative positional bias matrix R ∈ RN×N that is added inside each self-attention head [32]. With query,
key, and value matrices Q,K, V ∈RN×d, the attention map is [33]

Attention(Q,K, V ) = softmax
(QKT +R√

p

)
V, (1)

where p is the key dimension and R is shared across layers but learned during training. This formulation lets the model
encode relative offsets (e.g. Manhattan distances) directly in its pairwise interactions without introducing absolute positional
embeddings.

B. Vision Transformer Training

a) Training objective.: A 64×64 binary image is partitioned into a sequence of 4×4 patches, creating 256 patches with
associated tokens. For each training image x, we uniformly sample a mask set M ⊆ {1, . . . , 256} and replace those tokens by
a special learnable token. The ViT is optimized to reconstruct the true tokens at the masked positions, following the masked
language modeling paradigm [34]. With model parameters θ, the loss is

LCE(θ) = − 1

|M|
∑

j∈M
logPθ

(
xj | x\M

)
, (2)
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where
• xj is the ground-truth token at patch j;
• x\M denotes the context, i.e. the unmasked tokens;
• Pθ( · | x\M) is the categorical distribution produced by the ViT for patch j given that context (obtained after softmax).

Minimizing (2) therefore maximises the conditional likelihood of the true token values given the visible context, training the
network to approximate the true conditional distribution over all masking patterns.

b) Cyclic masking curriculum.: Training runs for 1000 epochs with batch size 100 and initial learning-rate 10−3 (Adam
optimizer). Masking follows a 100-epoch cycle inspired by curriculum learning principles [35]: the masking rate starts at 1%
in epoch 1 of a cycle and increases linearly to 99% by epoch 100, after which it resets. Early-cycle steps teach the model to
refine nearly complete fields; late-cycle steps force it to predict large missing regions, ensuring robustness across conditioning
densities.

After training, the ViT yields an approximation of the ground truth conditional distribution that we exploit for autoregressive
sampling (Section II-D).

TABLE I: Vision Transformer architecture and training hyper-parameters.

Parameter Value

Embedding dimension 64
Encoder layers 2
Attention heads / layer 2
Vocabulary size 5 462 tokens
Training epochs 1 000
Batch size 100
Optimizer Adam
Initial learning rate 10−2

Loss Cross-entropy (Eq. 2)
Masking schedule 1% → 99% every 100 epochs (cyclic)
Mask selection Uniform random per epoch
Relative position bias Learned R in Eq. 1
Sampling temperatures τ=1.0, 0.9 (Section II-D)

C. Markov random field Model and variable elimination algorithm

We employ a binary spatial pattern dataset for model training and evaluation. Each sample is a 64×64 0/1 field modeled as
a binary MRF. Following Austad & Tjelmeland [31], the joint probability distribution is given by:

p(x) ∝ exp

(∑

Λ∈C
vΛ(xΛ)

)
, (3)

where C denotes the set of all maximal cliques, xΛ represents the configuration of pixel outcomes in clique Λ, and vΛ is the
potential function for that clique.

Fig. 2: Third-order neighborhood structure in Markov random field construction.

The MRF has two types of maximal cliques, corresponding to the third-order neighborhood structure shown in Figure 2:
1) the 2×2 square; first row Figure 3.
2) the five-pixel star; second row Figure 3.

a) Clique potentials.: Table II lists the potential parameters used throughout this study. The entries correspond to the ten
equivalence classes of clique configurations shown in Figure 3.
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Fig. 3: Clique Potentials in the Markov random field model.

TABLE II: MRF clique-potential parameters used for exact sampling via VEA.

Clique type Configuration class λ

2× 2 square

Uniform (all 0 or all 1) λ1 = 0.9
Noise (three of one colour, one of the other) λ4 = −3.0
Horizontal / vertical border λ2 = 0.4
Diagonal border λ3 = 0.0

5-pixel star

Uniform λ5 = 0.0
Lone centre pixel λ6 = −5.0
Edge pattern λ7 = 0.0
Corner pattern λ8 = 0.0
Dead-end (three spokes) λ9 = −2.0
Straight line (two opposite spokes) λ10 = −2.0

b) Variable Elimination Algorithm (VEA).: The VEA provides sampling with minuscule approximation error from the
MRF distribution [31]. The algorithm operates in two phases:

Forward process: Starting from the joint distribution p(x) in Eq. 3, variables are eliminated sequentially. At each step i, we
marginalize out xi to obtain:

p(x2, . . . , xN ) =
∑

x1

p(x1, x2, . . . , xN ), (4)

p(x3, . . . , xN ) =
∑

x2

p(x2, x3, . . . , xN ), (5)

...

p(xN ) =
∑

xN−1

p(xN−1, xN ). (6)

This process constructs a sequence of uni-variate distributions, storing intermediate results needed for the backward pass.
Backward process: Sampling proceeds in reverse order. We begin by sampling xN ∼ p(xN ). For each subsequent variable,

we use the conditional distribution:
xi−1 ∼ p(xi−1|xi) =

p(xi−1, xi)

p(xi)
, (7)

where xi and p(xi) are known from the previous sampling step. This yields a complete realization x along with its likelihood
p(x) evaluation.

For conditional sampling, we organize the field such that observed variables xN−nO+1, . . . , xN appear last in the elimination
order. Rather than sampling these, we fix them to their observed values and begin the backward sampling from xN−nO

,
effectively sampling from p(xU |xO).

The VEA with the parameters in Table II produces realizations that we use as ground truth for training (Section II-B) and
for evaluation in Section III. Figure 4 shows unconditional realizations from the specified MRF model on the 64/times64
grid.
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Fig. 4: Unconditional realizations of the MRF model, generated with VEA, used as training data.

D. Vision Transformer Sampling
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(a) Initial stage with no context.

(b) Early stage with sparse context.

(c) Mid-stage with increased context.

(d) Late stage with nearly complete context.

Fig. 5: Conditional ViT sampling process using inverse Manhattan ordering. Each row shows three panels: Left: Current image
(conditioning context). Black = 0. White = 1. Gray = unsampled. Red = 1 observed. Blue = 0 observed. Green rectangles =
current location. Middle: Log-attention scores (QKT +R). Right: Probability of 10 most probable patches.

The trained ViT operates on image patches of 4×4 pixels (256 tokens for a 64×64 image). In all experiments we condition
on 15 pixels, not on whole patches. Let O = {p1, . . . , p15} be the observed pixel indices and xO their fixed binary values.
Each observed pixel lies inside exactly one patch; denote the set of those anchor patches by PO.

a) Constraint handling.: Whenever a patch t is predicted, the ViT returns logits ℓt ∈ R|V| for all vocabulary tokens.
If t ∈ PO we must enforce that the sampled token respects the observed pixel in its spatial slot. We therefore truncate the
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distribution:

ℓ̃t,k =

{
−∞ if token k disagrees with xO ,

ℓt,k otherwise,
(8)

followed by renormalisation P (k | context) =
exp(ℓ̃t,k)∑
k′ exp(ℓ̃t,k′)

. For non-anchor patches t /∈ PO the logits are unaltered.

b) Sampling order.: Let dM(t,PO) =
∑

s∈PO
distM(t, s) be the sum of Manhattan (L1) distances from an unobserved

patch t to all anchor patches. Define also its inverse-score dIM(t,PO) =
∑

s∈PO

[
distM(t, s)

]−1
(larger when t is near the

anchors).
1) Manhattan-ascending sampling

a) Sample all anchor patches PO first (with truncation above).
b) For every remaining patch t, compute dM(t,PO).
c) Visit the unobserved patches in ascending order of dM (geometric centre–outward) and sample each exactly once.

2) Inverse-Manhattan descending sampling
a) Sample the anchor patches PO first (with truncation).
b) Compute dIM(t,PO) for every other patch.
c) Visit patches in descending order of dIM—hence neighbours of the anchors are filled first, progressing outward.

The four-stage process visualised in Figure 5 mirrors the mathematical description above; panel (a) shows step 1 (anchor-patch
inference) and panels (b)–(d) illustrate successive iterations under the inverse-Manhattan schedule.

c) Temperature.: During token sampling we apply a softmax temperature τ ∈ {1.0, 0.9} to the logits: Pτ (k) =
softmax(ℓk/τ). Lower temperature (0.9) sharpens the distribution, yielding lower-entropy, more deterministic patches; τ = 1.0
preserves the model’s raw uncertainty.

d) Complete procedure.: For each of the four (ordering, temperature) pairs we generate 1 000 conditional realisations.
Anchor patches are always sampled first with their logits truncated to respect the 15 observed pixels, and every remaining
patch is sampled exactly once in the sequence determined above—no further refinements are made. This yields fully populated
64×64 binary fields consistent with the conditioning, which are subsequently analysed against the VEA baseline.

E. Experiment Setup

We evaluate the performance of the ViT sampler against the VEA baseline by generating 1,000 conditional samples from
each method, all conditioned on the same set of 15 observed pixel locations to ensure a consistent basis for comparison. We
consider five different sampling strategies:

• VEA (Reference) – the baseline conditional sampler using the variable elimination algorithm [31] (ground-truth
distribution);

• ViT-Manhattan (τ = 1.0) – Vision Transformer sampler using Manhattan-distance fill ordering and temperature τ = 1.0;
• ViT-Inverse (τ = 1.0) – Vision Transformer sampler using inverse-Manhattan ordering, τ = 1.0;
• ViT-Manhattan (τ = 0.9) – Vision Transformer with Manhattan ordering, sampling with temperature τ = 0.9;
• ViT-Inverse (τ = 0.9) – Vision Transformer with inverse-Manhattan ordering, temperature τ = 0.9.
The generated samples are analyzed using a comprehensive suite of evaluation metrics that capture different aspects of

spatial distribution accuracy, including pointwise structural similarity (PointSSIM) [36], marginal distributions (JS divergence),
sample log-likelihoods, rank alignment, two-point statistics (transiograms), and third-order spatial cumulants. These metrics,
detailed in the Results section, provide a thorough assessment of how closely the ViT-generated patterns match the true MRF
distribution as represented by the exact VEA baseline.

III. RESULTS

We evaluate the Vision Transformer-based conditional samplers against the exact Variable Elimination Algorithm (VEA)
baseline to understand how closely the learned model reproduces the true Markov random field (MRF) distribution. Our
ViT models were tested with two sequential pixel-filling orderings – the standard Manhattan-distance order and the inverse
Manhattan order – at sampling temperature τ = 1.0 (with additional experiments at τ = 0.9). In the following, we present key
findings covering visual sample comparisons, probabilistic fidelity, and structural statistics.

A. Visual Sample Quality

Figure 6 shows five conditional samples from each model (MRF baseline and ViT variants), all conditioned on the same 15
observed pixels (blue dots for 0-values, red dots for 1-values). Visual inspection reveals that ViT samples closely resemble the
MRF samples in overall structure and honor all conditioning constraints. Notably, the temperature-adjusted samples (τ = 0.9)
appear smoother and more closely match the MRF’s visual characteristics, suggesting that temperature tuning helps capture
the true distribution’s smoothness properties.
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(a) Three conditional realizations from exact MRF sampler (ground truth)

(b) Three conditional realizations from ViT Manhattan ordering

(c) Three conditional realizations from ViT Inverse Manhattan ordering

(d) Three conditional realizations from ViT Manhattan with τ = 0.9

(e) Three conditional realizations from ViT Inverse Manhattan with τ = 0.9

Fig. 6: Conditional realizations from each sampling method. All samples share the same 15 conditioning pixels (blue: 0-values,
red: 1-values).
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B. Sequential Sampling Dynamics

Fig. 7: Accumulated log-posterior probability trajectories for the first 500 sampling steps. Lines show mean trajectories; shaded
regions indicate ±2 standard deviations. MRF shows steeper initial descent with lower variance compared to ViT methods.

Figure 7 reveals fundamental differences in how the methods build up probability during sequential sampling. The MRF
trajectory exhibits a steep initial descent with minimal variance, reflecting low-probability assignments when sampling with
limited context (upper-left corner start). After approximately 90 samples, the curve flattens and variance increases as more
observations provide context, though individual low-probability choices can create ripple effects.

In contrast, ViT trajectories appear nearly linear due to their sampling strategy: starting near observed points provides
immediate confidence, and the method maintains proximity to newly sampled patches throughout. Temperature-adjusted
trajectories (τ = 0.9) consistently remain above τ = 1.0 curves, as expected from their more peaked distributions.

C. Marginal Probability Maps and Calibration

Fig. 8: Cell-wise marginal probabilities for each model. MRF (ground truth) shows well-defined probability structure around
conditioning points. ViT models exhibit longer-range dependencies and spatial biases.
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Fig. 9: JS divergence between MRF and ViT probability maps. High divergence (red) indicates regions where models disagree
most strongly, particularly in boundary zones.

Figures 8 and 9 reveal fundamental differences in how the models assign pixel-level probabilities. The MRF exhibits
well-localized probability fields around conditioning points with sharp transitions between high and low probability regions.
In contrast, the ViT models show extended spatial dependencies that propagate far beyond the immediate neighborhood of
observed pixels. This manifests as systematic biases where the ViT tends to assign intermediate probabilities (closer to 0.5) in
regions where the MRF is highly confident (near 0 or 1).

The Jensen-Shannon (JS) divergence map (Figure 9) quantifies these differences, with the highest divergences occurring
precisely at the boundary zones between different probability regimes. This pattern suggests the ViT has learned a smoother,
more diffuse representation of the conditional distribution, potentially due to the transformer’s tendency to aggregate information
across broad spatial contexts. Temperature adjustment exacerbates these biases: while τ = 0.9 produces visually more coherent
samples, it amplifies the probability distortions, creating even stronger spatial biases in the marginal distributions.

D. Sample Probability Distributions

Fig. 10: Log-posterior probability distributions evaluated under the MRF model. MRF samples show highest log-posteriors;
temperature-adjusted ViT samples overlap MRF distribution better than τ = 1.0 samples.
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Fig. 11: Log-posterior probability distributions evaluated under ViT Manhattan model. ViT consistently assigns higher
probabilities to its own samples compared to MRF samples.

Fig. 12: Scatter plot comparing log-posterior evaluations: ViT model (x-axis) vs MRF model (y-axis). Diagonal indicates perfect
agreement. MRF samples (blue) align with diagonal; ViT samples deviate, indicating evaluation disagreement.

The analysis of sample-level log-probabilities provides crucial insights into how well the ViT captures the true distribution’s
support and probability mass allocation. Figure 10 shows the distribution of log-posterior values when samples from each
method are evaluated under the ground-truth MRF model. The MRF’s own samples (blue) exhibit a distribution centered
around -800, reflecting the natural variability in the true conditional distribution.

The ViT-generated samples reveal a critical limitation: while they maintain similar variance to the MRF distribution, they
are systematically shifted toward lower probabilities. The non-temperature ViT samples (τ = 1.0) form distributions centered
around -1300 to -1200, showing minimal overlap with the MRF baseline. This indicates that the ViT fails to generate the
high-probability configurations that characterize the true distribution. The temperature-adjusted samples (τ = 0.9) partially
address this issue, shifting closer to the MRF distribution (centered around -1000 to -900) and achieving better overlap, though
still falling short of matching the MRF’s high-probability modes.
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When we reverse the evaluation perspective (Figure 11), using the ViT itself as the evaluator, all distributions converge to
a much narrower range around -1100 to -700. Notably, the ViT assigns the highest probabilities to its temperature-adjusted
samples, intermediate probabilities to MRF samples, and lowest to its own non-temperature samples. This reveals that while the
ViT maintains consistent relative rankings across different evaluation methods, it systematically overestimates the probability of
its own samples when compared to ground truth. Importantly, both evaluators assign similar probabilities to the MRF samples,
confirming the consistency of the ground-truth distribution.

The scatter plot (Figure 12) provides a sample-by-sample comparison that crystallizes these findings. Perfect agreement
between models would place all points on the diagonal line. While MRF samples (blue) cluster close to this diagonal –
confirming consistency between evaluation methods – the ViT samples form a dispersed cloud with systematic deviations.
The predominance of points below the diagonal confirms that the ViT overvalues its own generations relative to their true
probability.

This probability miscalibration has important implications for uncertainty quantification. While the ViT successfully captures
the variance of the true distribution, its systematic shift toward lower-probability samples means it misses the most likely
configurations of the conditional distribution. The model generates a diverse but suboptimal set of patterns, exploring the
correct breadth of possibilities but centered on the wrong region of probability space.

E. Structural Analysis

1) PointSSIM: PointSSIM is a resolution-invariant image comparison metric that converts binary images into sparse anchor
point representations [36]. Anchor points are extracted as locally adaptive maxima from the minimal distance transform, with
each point marked by its radius to the nearest object boundary and object label. From these anchor points, four structural
features are computed: anchor count (number of points), area coverage (total area spanned by anchor radii), anchor points per
object (structural heterogeneity), and spatial variance irregularity (clustering measure). The PointSSIM metric combines these
four features to provide robust, rotation-invariant image comparison that outperforms traditional pixel-based metrics like SSIM,
MSE, and MS-SSIM in distinguishing between different structural patterns while maintaining high within-class consistency.
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(a) MRF sample with PointSSIM anchor points (b) ViT Manhattan sample

(c) ViT Inverse Manhattan sample (d) ViT Manhattan τ = 0.9 sample

(e) ViT Inverse Manhattan τ = 0.9 sample

Fig. 13: PointSSIM structural analysis showing anchor point locations, radii, and labels. Non-temperature ViT samples show
higher anchor point density with smaller radii; temperature samples more closely match MRF structure.
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Fig. 14: PointSSIM feature distributions: anchor point count, area coverage, mean anchors per object, and structure metric.
ViT samples show higher area coverage (more 1-values) and less smooth objects than MRF.
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Fig. 15: PointSSIM similarity scores between samples. Temperature-adjusted ViT samples achieve higher structural similarity
to MRF samples on average.

The structural analysis through PointSSIM metrics reveals how the probability biases identified earlier manifest as tangible
differences in image structure. Figure 13 visualizes these differences through anchor points that capture key structural elements.
The MRF sample (panel a) shows a balanced distribution of anchor points with moderate radii, representing well-formed
structural elements. In contrast, non-temperature ViT samples (panels b,c) exhibit a proliferation of clustered anchor points
with tiny radii, indicating fragmented, irregular structures. Temperature adjustment (panels d,e) significantly improves structural
coherence, producing anchor patterns more similar to the MRF baseline.

The quantitative analysis in Figure 14 confirms these visual observations across multiple structural dimensions. The anchor
point count distribution shows ViT samples, particularly without temperature adjustment, generate significantly more anchor
points than MRF samples. This excess indicates over-segmentation – the ViT creates many small, disconnected components
rather than the larger, coherent structures of the true distribution. The area coverage metric reveals another manifestation of
the white-pixel bias: ViT samples consistently cover more area (higher fraction of 1-values), with temperature adjustment
amplifying this effect.

The mean anchor points per object metric provides insight into structural smoothness. MRF samples show the lowest
values, indicating smooth, regular objects. Non-temperature ViT samples have the highest values, reflecting rough, irregular
boundaries with many protrusions. The cross-plot between total anchor points and mean per object reveals distinct diagonal
stripes, suggesting that as objects become more irregular, they require proportionally more anchor points to represent their
complexity. Finally, the structure metric shows ViT samples tend toward higher values (more clustered anchor points) compared
to the MRF’s more random spatial distribution, likely due to the proliferation of small, clustered irregular features.

Figure 15 synthesizes these structural differences into overall similarity scores. Temperature-adjusted samples achieve
significantly higher similarity to MRF samples, confirming that temperature helps recover appropriate structural properties.
However, even the best ViT samples show a tail of low similarity scores, indicating persistent structural anomalies in a subset
of generated samples.
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(a) MRF: symmetric, well-structured covariance (b) ViT Manhattan: biased with extended correlations

(c) ViT Inverse Manhattan: reduced bias (d) ViT Manhattan τ = 0.9: amplified bias

(e) ViT Inverse Manhattan τ = 0.9: most similar to MRF

Fig. 16: Empirical covariance matrices (zoomed near conditioning point). MRF shows symmetric structure; ViT variants exhibit
varying degrees of bias and correlation length distortion.

The covariance structure analysis (Figure 16) provides deeper insight into how the models capture spatial dependencies.
These matrices are zoomed in near a conditioning point to reveal local correlation behavior. The MRF covariance (panel
a) exhibits a symmetric, well-structured pattern reflecting the true spatial correlations induced by the clique potentials. The
correlation strength decays smoothly with distance, creating concentric patterns around the conditioning point. The ViT variants
show markedly different behaviors that reveal a fundamental misunderstanding of correlation structure. Without temperature
adjustment, the models exhibit a problematic dual nature: excessively long correlations around conditioning points (creating
heavy biases) while maintaining correlations that are too short in the rest of the field. Manhattan ordering (panel b) introduces
strong directional biases with extended correlations around the conditioning point that propagate preferentially along certain
axes. This reflects the sequential nature of the sampling process and the transformer’s tendency to overweight conditioning
information. Inverse Manhattan ordering (panel c) reduces but does not eliminate these biases, showing more isotropic but
still distorted correlation patterns. Temperature adjustment (τ = 0.9) attempts to address the short-range correlation issue but
dramatically amplifies the conditioning bias. The Manhattan model with temperature (panel d) shows severe bias around the
conditioning point with correlation strengths that extend far beyond the MRF’s natural range, creating artificial long-range
dependencies. While this increases correlation lengths throughout the field (addressing the undersmoothing), it exacerbates the
overconditioning problem.

Interestingly, the Inverse Manhattan with temperature (panel e) achieves the best balance. The correlation lengths throughout
the field appear similar to the ground truth, while the conditioning bias, though still present, is less severe than in the Manhattan
variant. This suggests that the combination of inverse ordering and temperature adjustment partially compensates for the
transformer’s inherent tendency to overcondition on observed data while undersmoothing elsewhere. This finding aligns with
the earlier observation that Inverse Manhattan with temperature produces the most structurally faithful samples.
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Fig. 17: Frequency of 4×4 patterns (token size). Temperature samples oversample homogeneous white patterns; non-temperature
undersample homogeneous patterns. Both exhibit white bias.

Figure 17 provides a critical insight into the mechanism behind the ViT’s biases. Since the transformer operates on 4×4 tokens,
these pattern frequencies directly reflect the model’s token-level probability assignments. The analysis reveals a fundamental
trade-off: non-temperature sampling underestimates homogeneous patterns (both all-white and all-black), creating excess texture
and fragmentation. Temperature adjustment overcorrects, dramatically oversampling homogeneous white patterns while still
underrepresenting black ones.

This asymmetry explains many of the observed phenomena. The white bias manifests directly in token probabilities,
propagating through the sequential generation process to create the extended spatial biases seen in marginal probabilities and
covariance structures. The inability to correctly balance homogeneous versus textured patterns at the token level fundamentally
limits the model’s capacity to reproduce the true distribution’s statistical properties. Temperature adjustment partially mitigates
texture issues but exacerbates the white bias, suggesting that simple temperature scaling cannot fully address the underlying
probability miscalibration.

F. Summary of Findings

Our comprehensive evaluation reveals both the potential and limitations of Vision Transformers for conditional image
sampling.
Strengths:

• ViT models successfully capture large-scale spatial structures and respect all conditioning constraints
• Temperature adjustment (τ = 0.9) helps address correlation length issues in unconditioned regions
• The Inverse Manhattan ordering with temperature achieves the best balance between correlation structure and conditioning

bias
• Computational efficiency and flexibility advantages over exact methods remain significant

Key Limitations:
• Systematic probability biases: ViT models exhibit persistent bias toward white pixels (1-values), manifesting in marginal

probabilities, covariance structures, and token frequencies
• Dual correlation failure: The transformer simultaneously overconditions around observed pixels (creating excessive long-

range correlations) while undersmoothing elsewhere (correlations too short in unconditioned regions)
• Probability shift: While maintaining appropriate variance, ViT samples are systematically shifted toward lower-probability

regions, missing the high-probability modes of the true distribution
• Token-level miscalibration: The 4×4 pattern analysis reveals biases originate at the token level, with temperature adjustment

creating a trade-off between proper correlation lengths and amplified conditioning bias
Implications: The transformer’s learned representation reveals a fundamental misunderstanding of how conditioning information
should influence spatial correlations. The model overweights the importance of observed pixels, creating artificial long-
range dependencies around conditioning points, while failing to maintain proper correlation structures in unconditioned
regions. Temperature adjustment partially addresses the correlation length issue but exacerbates the conditioning bias, and no
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parameter setting successfully balances both aspects. For applications requiring accurate spatial statistics or proper uncertainty
quantification, these correlation structure failures represent a critical limitation that must be weighed against computational
advantages.

IV. CONCLUSION

This study demonstrates that Vision Transformers provide a remarkably general framework for conditional image sampling,
offering explicit posterior probabilities and the flexibility to handle arbitrary conditioning geometries without architectural
modifications. The ability to compute exact likelihoods for any configuration enables rigorous statistical analysis—a critical
advantage over black-box generative models where such evaluation would be impossible.

Our comprehensive evaluation reveals that ViT models can reproduce the visual characteristics of MRF samples with
reasonable fidelity, successfully capturing large-scale structures and respecting conditioning constraints. However, this visual
similarity masks fundamental statistical limitations. The models exhibit systematic biases, most notably an overrepresentation
of white pixels that originates at the token level and propagates through the generation process. While temperature adjustment
can improve structural coherence, it exacerbates these biases, revealing a fundamental trade-off: we can optimize for either
structural accuracy or unbiased probabilities, but not both simultaneously.

The analysis uncovered that ViT models learn a contracted, smoothed approximation of the true distribution. This limitation
appears intrinsic to the current architecture and training approach, though it remains an open question whether substantially
more compute, training data, or model parameters might overcome these biases.

Perhaps the most important finding is the critical role of thorough statistical evaluation. Temperature tuning and other
modifications can make generated samples appear visually compelling, potentially masking severe distributional biases. Without
comprehensive analysis across multiple statistical dimensions—marginal probabilities, covariance structures, pattern frequencies,
and higher-order statistics—these biases would remain hidden, leading to false confidence in the model’s fidelity. The Vision
Transformer’s amenability to such analysis, through its explicit probability computations, makes it particularly valuable for
understanding these trade-offs.

Looking forward, these findings suggest several research directions. Addressing token-level biases through modified training
objectives or architectural changes could improve distributional fidelity. Hybrid approaches combining the flexibility of
transformers with the statistical rigor of classical methods like MRF may offer a path toward models that are both efficient
and accurate. Most importantly, this work emphasizes that visual quality alone is insufficient for validating generative models
in scientific applications—rigorous statistical analysis must be an integral part of model evaluation and deployment. While
Vision Transformers offer compelling advantages in efficiency and flexibility, practitioners must carefully weigh these benefits
against the statistical limitations when uncertainty quantification and distributional accuracy are paramount.
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This paper presents PointSSIM, a novel low-dimensional 

image-to-image comparison metric that is resolution invariant. 

Drawing inspiration from the structural similarity index 

measure and mathematical morphology, PointSSIM enables 

robust comparison across binary images of varying resolutions 

by transforming them into marked point pattern 

representations. The key features of the image, referred to as 

anchor points, are extracted from binary images by identifying 

locally adaptive maxima from the minimal distance transform. 

Image comparisons are then performed using a summary 

vector, capturing intensity, connectivity, complexity, and 

structural attributes. Results show that this approach provides 

an efficient and reliable method for image comparison, 

particularly suited to applications requiring structural analysis 

across different resolutions. 

 

 
Index Terms—Image comparison metric, Mathematical 

Morphology, SSIM. 

 

I. INTRODUCTION 

Image comparison is a fundamental task in fields 

such as computer vision (Lowe, 2004; Szelisk, 2020), 

medical imaging (Litjens et al., 2017), and geostatistics 

(Pyrcz & Deutsch, 2014). Accurate and efficient image 

comparison metrics are essential for applications like image 

registration, quality assessment, and structural analysis 

(Wang & Bovik, 2009).  

 

The most straightforward way of comparing images 

is pixel-to-pixel correspondence, such as Mean Squared 

Error (MSE) (Maindonald, 2007),  

𝑀𝑆𝐸(𝑥, 𝑦) =  
1

𝑛𝑟𝑐
∑(𝑥𝑖 − 𝑦𝑖)2

𝑛𝑟𝑐

𝑖=1

 

In this case, 𝑥 and 𝑦 are images with  𝑛𝑟𝑐 number 

of pixels. This is often used as a loss function for training 

Machine Learning (ML)-models and can be effective at 

image reconstruction for example in generative ML-models 

such as Variational Autoencoders (VAEs) (Kingma & 

Welling, 2019). However, for image-comparison it has 

limitations. It is particularly sensitive to rotations, and the 

comparison value can be difficult to interpret (Goodfellow, 

2016). 

 

A more robust approach to image comparison is to 

use summary statistics that are rotation invariant. Univariate 

 
 

statistics summarize and compare pixel frequencies. The 

most common univariate statistics are the mean and the 

variance: 

 

𝜇𝑥 =  
1

𝑛𝑟𝑐
∑ 𝑥𝑖

𝑛𝑟𝑐

𝑖=1

,   𝜎𝑥
2 =

1

𝑛𝑟𝑐 − 1
∑(𝑥𝑖 − 𝜇𝑥)2

𝑛𝑟𝑐

𝑖=1

. 

Here, 𝜇𝑥 is the mean and 𝜎𝑥
2 is the variance of the 

values in an image. Comparing mean and variance of 

images can be effective, although it does not take into 

consideration interactions between pixels, which can be 

critical in capturing structure in the image. 

 

 Second-order statistics are commonly used to 

capture interactions between pixels. In geostatistics, 

variograms are used to visualize and study second-order 

interactions (Pyrcz & Deutsch, 2014). The variogram is 

directly connected to the covariance and it quantifies spatial 

correlations at different lags. The formula for the semi-

variogram (variogram divided by 2) for an image 𝑥 at lag 

distance ℎ is: 

 

𝛾(ℎ) =  
1

2|𝑁(ℎ)|
∑ |𝑥𝑖 − 𝑥𝑗|

2

(𝑖,𝑗)∈𝑁(ℎ)

, 

  

where 𝑁(ℎ) is the collection of pixel pairs where the lag 

distance is ℎ. Variograms of images can be compared at 

different lags, or one can take the MSE between two 

variograms at all lag distances. The variogram is limited to 

characterizing second-order interactions, but higher-order 

interaction terms may be relevant.  

 

 There is an array of metrics to characterize higher-

order interactions (Grammer et al., 2020; Leuangthong et 

al., 2004; Lyster et al., 2004; Zuo et al., 2023). Many of 

them rely on scanning the image templates. For a single 

inspection at one location a limited number of immediate 

neighbors is used. In 2D the template typically comprises of 

5 to 9 cells (template center plus immediate neighbors). By 

scanning the entire image with the template, we can 

calculate frequencies of specific template events and then 

compare these frequencies between images. Such methods 

are called n-point histograms (Boisvert et al., 2010; Deutsch 

& Pyrcz, 2013; Grammer et al., 2020; Pyrcz, 2016; 

Tahmasebi, 2018). The histogram part comes from the fact 

that we often put the specific template events and their 

associated frequencies in histograms. A common metric of 



 

 

n-point histograms for image-comparisons is the MSE over 

the template value frequencies. These n-point histograms 

can be effective, but they pose computational challenges if 

the number of pixels in the image or the template size is 

large, for example, if more than the adjacent neighbors are 

considered. Furthermore, as the template size increases the 

number of possible template values increases exponentially, 

making it difficult to summarize in histograms. This is a 

challenge, as we are often interested in larger scale 

structures than the 4-point or 8-point template.  

 

To address this challenge a lot of methods have 

been proposed. Tan et al., (2014) proposed using multi-

dimensional scaling (MDS) to cluster patterns based on a 

training image. For each cluster, the centroid was extracted, 

such that for each pattern in an image the closest centroid 

decides which cluster the pattern belongs to. In this way 

one can compare histograms of pattern clusters rather than 

every possible pattern for large templates. Honarkhah & 

Caers, (2010) proposed an adaptive template selection 

method based on elbow point detection on the entropy. 

They defined the entropy to be the information needed to 

encode a pattern. They additionally used MDS to cluster 

patterns. Zuo et al., (2023) proposed a pattern classification 

distribution method (PCDM) inspired by Honarkhah & 
Caers, (2010) and correlation-driven direct sampling (Zuo 

et al., 2019) to make adaptive templates. Pattern clusters 

were found using hierarchical clustering (Vichi et al., 

2022). All these methods rely on dimensionality reduction 

techniques (Nanga et al., 2021). This can be effective at 

binning templates values into clusters or groups, making it 

easier to summarize in histograms. However, it becomes 

difficult to interpret (Tahmasebi, 2018). Lilleborge et. al., 

(2024) proposed a method based on counting 3D template 

patterns and looking at the probability of the counts being 

samples from the same distribution instead of relying on 

dimensional reduction techniques.  

 

 Other approaches for image comparison that has 

gained a lot of popularity recently are composite metrics. In 

particular, the Structural Similarity Index Measure (SSIM) 

proposed by Wang et al. (2004) provides a metric between 

0 and 1 for structural similarity. Originally, it was 

constructed to measure image degradation as perceived 

changes in structural information, but it was later adopted 

as an image comparison metric. It works by assessing and 

comparing three measures of a pair of images. The 

measures are luminance; represented by the mean of the 

pixel values, contrast; represented by the variance of the 

pixel values and structure; represented by the covariance 

between the image pixels. Combining it all together the 

metric for two images 𝑥 and 𝑦 becomes: 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
, 

 

𝜎𝑥𝑦 =
∑ (𝑥𝑖−𝜇𝑥)(𝑦𝑖−𝜇𝑦)

𝑛𝑟𝑐
𝑖=1

𝑛𝑟𝑐−1
 is the covariance between pixel 

values of images 𝑥 and 𝑦. Further, 𝑐1 = (0.01 ⋅ 𝐿)2 and 𝑐2 =
(0.03 ⋅ 𝐿)2 stabilize the division with the weak denominator, 

with 𝐿 being the dynamic range of the pixel-values (Wang et 

al., 2004).  The SSIM metric has notable weaknesses (Brunet 

et al., 2012). First, the metric is not resolution invariant, 

meaning that 𝑥 and 𝑦 must have the same pixel dimensions. 

Further, the structure measure in SSIM is particularly 

sensitive to pixel-level information, making it less robust as 

it computes the covariance at a pixel-to-pixel basis. 

Improvements such as Complex Wavelet SSIM (CW-SSIM), 

proposed by Sampat et al. (2009), which first applies the 

complex wavelet transform and then calculates SSIM on the 

transformed signals, yield better performance and higher 

scores for transformed images (Sampat et al., 2009). While 

effective for continuous images, wavelet transforms are 

unsuitable for discrete images like binary or segmented ones, 

as they assume smooth intensity variations. Another popular 

extension is the Multi-Scale SSIM (MS-SSIM) (Wang et al., 

2003) that gives a more robust metric for comparing 

structures at different scales.  

 

This paper introduces a novel image-to-image 

comparison metric that addresses these limitations, offering 

robustness to resolution and rotation. While theoretically 

invariant to resolution, some smoothing effects at higher 

resolutions introduce slight sensitivity to scale. Our 

approach, inspired by SSIM (Wang et al., 2004) and the 

principles of Mathematical Morphology (MM) developed by 

Matheron & Serra (2000), applies transformations to convert 

the image into a point process represented by anchor points, 

like how MM uses anchors to define points invariant under 

transformation. This allows us to bypass pixel-to-pixel 

correspondence. It measures and compares diverse aspects of 

the images, facilitating image comparison at different 

resolutions. Our proposed image-to-image comparison 

metric first transforms both images into a lower dimensional 

marked point-process representation (Ripley, 2014) where 

each point in addition to its location has two marks: radius 

and object label. We then do the comparison based only on 

this representation. The locations are found by extracting 

significant landmarks, called anchor points. These anchor 

points are determined through a novel locally adaptive 

maxima from the minimal distance transformation MM 

operator. This transform is resolution invariant, meaning it is 

not sensitive to pixel dimensions. Dimensionality reduction 

is accomplished by compressing the image with  

𝑛𝑟𝑐  dimensionality into a set of anchor points with 𝑛𝑝 × 2 

dimensionality (2 coordinates) where 𝑛𝑝 ≪  𝑛𝑟𝑐 enabling 

efficient and robust comparison. The added marks of radius 

and label (described in Section 2) make the procedure output 

a marked point-process with dimensionality 𝑛𝑝 × 4. Once 

the point process is described, images are compared by 

evaluating four key measures related to the marked point-

process,  

• Anchor count: Number of anchor points 

• Area coverage: a measure of the overall area spanned by 

the anchor point radii relative to the image size. 

• Anchor points per object: a measure of the average 

heterogeneity of objects. 

• Spatial variance irregularity: a measure of the spread of 

anchor points. 



 

 

Notably, the measure comparison is rotation invariant. 

 

Section 2 describes the methodology.  Section 3 

demonstrates the performance on multiple datasets and 

benchmarks our proposed PointSSIM metric against MSE, 

MS-SSIM, and SSIM image-to-image metrics. Section 4 

reviews the results and their implications. We conclude with 

a summary of our findings and suggestions for future 

research directions in Section 5. 

II. METHODOLOGY 

We introduce the methodology by first showing a 

schematic representation of the PointSSIM method, 

explaining each step of the process. We then develop the 

point-process representation using an example binary 

image. Figure 1 shows a schematic representation of the 

PointSSIM method. There are two steps: grid- to marked 

point-process representation and marked point-process 

representation to PointSSIM scalar value. 

 
 

                                Figure 1: Schematic representation of the PointSSIM method. 

 

A. Grid- to marked-point process representation 

The first step of the method is transforming the 

images from grid coordinates to a base coordinate system. 

If the two binary images have the same size, i.e. 𝑛𝑐1 = 𝑛𝑐2 

and 𝑛𝑟1 = 𝑛𝑟2, then we can proceed to the next step. If not, 

we set (𝐿x, 𝐿y) = min((𝑛𝑐1, 𝑛𝑟1), (𝑛𝑐2, 𝑛𝑟2)) and 𝑐x𝑖 =

𝑛𝑐𝑖Δxi, 𝑐y𝑖 = 𝑛𝑟𝑖Δy𝑖 , 𝑖 ∈ [1,2], where (𝑐x𝑖 , 𝑐y𝑖) are the 

coordinates in the base coordinate system and Δx𝑖 =
𝐿x

𝑛𝑐𝑖
,  

Δy𝑖 =
𝐿y

𝑛𝑐𝑖
 are the cell sizes of the base coordinate system.  

 

Once a base coordinate system is established, we 

can extract the anchor points of the images. We  introduce 

this step of the PointSSIM method by showing the 

procedure to a marked point-process on a single example 

binary image 𝑥 = {𝑥𝑖𝑗 , 𝑖 = 1,2, … ,
𝐿x

Δx
, 𝑗 = 1,2, … ,

𝐿y

Δy
}. 

Figure 2 shows a display of the binary image produced by 

multiple point-statistics-based simulation (Grammer et al., 

2020). 

 
Figure 2: Display of a 300x300 binary image produced 

using Multiple Point-Statistics. 

1) Minimal Distance Transform 

The first step involves performing a minimal 

distance transform on the image (Banerji, 2000). This 

transform is defined as follows: 

 

Equation 1 

𝐷(𝑥)𝑖𝑗 = {min
(𝑘,𝑙)

𝑑((𝑖, 𝑗), (𝑘, 𝑙)) : 𝑥𝑘𝑙 = 0}, 

 

 where 𝑑((𝑖, 𝑗), (𝑘, 𝑙)) is the Euclidean distance between 

two grid cell positions (𝑖, 𝑗) and (𝑘, 𝑙). For a grid cell where 

𝑥𝑖𝑗 = 0 this distance is 0. For a grid cell where 𝑥𝑖𝑗 = 1, 

𝐷(𝑥)𝑖𝑗 in Equation 1 is larger than 0. This transform 

calculates the minimal distance from any pixel to the 

nearest pixel with a value of 0. In Figure 3 we display the 

minimal distance transform of Figure 2. 



 

 

 
Figure 3: The minimal distance transform of the binary 

image in Figure 2. 

2) Identifying Anchor points 

A. The image 𝐷(𝑥)𝑖𝑗 , 𝑖 = 1, … ,
𝐿𝑥

𝛥𝑥
, 𝑗 =

1, … ,
𝐿𝑦

𝛥𝑦
 has maximum values along the skeleton of the 

objects, which lie along ridges. The concept of anchor 

points involves finding these maximum values of the 

minimal distance transform, which can be viewed as 

points invariant under differentiation, analogous to 

anchor points in MM (Van Droogenbroeck, 2009). 

 

B. For discrete images, local maxima can be 

identified using a template. Common choices include 

the 4-point and 8-point templates, depending on 

whether diagonals are considered neighbors. We apply 

the 8-point template, treating diagonals as neighbors. 

We also allow ties, meaning if any point is greater than 

or equal to all its 8-point neighbors, it is considered a 

local maximum. For an image 𝑦, the local maximum is 

defined as:  

 

Equation 2 

𝐿(𝑦)𝑖𝑗 =  {
1 if 𝑦𝑖𝑗 ≥ 𝑦𝑘𝑙  for all 𝑦𝑘𝑙 ∈ 𝒩𝑖𝑗 ,

0                                  otherwise,
  

C.  where  𝒩𝑖𝑗 = {𝑖 + 𝑎, 𝑗 + 𝑏 | 𝑎, 𝑏 ∈ {−1,0,1}  ∧  

(𝑎, 𝑏) ≠ (0,0)} are the 8 neighbor grid cells of (𝑖, 𝑗). 

Figure 4 highlights the local maxima within the distance 

transform 𝐿(𝐷(𝑥)) as red points. 

 
Figure 4: Local maximum points highlighted by red 

markers of the minimal distance transform of the binary 

image in Figure 2. 

3) Locally Adaptive Anchor points 

To avoid superfluous high-density points and to 

integrate local scale information, we use locally adaptive 

anchor points, ensuring that no two anchor points are closer 

to each other than to the edge of the object: 

  

Equation 3 

𝐿′(𝑦)𝑖𝑗

= {
1  if 𝐷(𝑦)𝑖𝑗 ≤ min

(k,l)
{𝑑((𝑖, 𝑗), (𝑘, 𝑙)): 𝐿(𝑦)𝑘𝑙 = 1}

0                                                                 otherwise
. 

 

Figure 5 shows the customized anchor points 𝐿′(𝐷(𝑥)) with 

both the distance transformed image and the original image 

as background. 



 

 

 
Figure 5: Locally adaptive local maximum points of the 

minimal distance transform of the binary image in Figure 2 

highlighted with red markers, with the minimal distance 

transform as background to the left and the original image 

as background to the right. 

 

The locally adaptive method described in Equation 

3 ensures that anchor points are distributed based on object 

size, preserving the relative location and number of points 

for objects of the same shape, regardless of scale. This 

approach maintains sufficient spacing between anchor 

points while preserving enough density to capture 

meaningful structural details.  

 

B. Marked Point-Process Representation 

 

Once the anchor points are identified, the image is 

effectively converted into a low-dimensional point-process 

representation. The point-process representation has a 

designed feature in that no two anchor points can be closer 

to each other than to the border of the object. This can be 

viewed as a marked point-process, where each anchor point 

has two marks. The first is the effective radius of the anchor 

point. If we draw a circle around each anchor point to the 

border of the object, we have the property that each circle 
only contains a single point, the center. The radius is an 

important mark as it tells us about the local regularity 

around the anchor point. Figure 7 shows an illustration of 

the binary image with the anchor point circles included. The 

second mark is the object label of the anchor point, telling 

us which object the anchor point belongs to. Object labels 

are found by a standard connected component 

method(Virtanen et al., 2020). This method is using a 

structuring element to scan the image and labeling based on 

the labels of its neighbors. We use the 8-neighbors as the 

structuring element. This is highlighted by the color in 

Figure 7. 

 
Figure 6: Anchor points of the binary image presented in 

Figure 2, with the inclusion of position (represented as 

dots), circles (with the anchor point positions as origo, and 

the radius representing the distance to the closest border of 

the object), and label (represented by color scheme). 

  

 

Drawing inspiration from the SSIM we focus on 

properties of the marked point-process that are invariant 

under rotation and resolution scaling transformations. We 

introduce the following anchor point notation: 

Equation 4 

𝐴𝑝 = {(𝑖, 𝑗): 𝐿′(𝐷(𝑥))𝑖𝑗 = 1}, 

Equation 5 

𝐴𝑟 = {𝐷(𝑥)𝑖𝑗:  𝐿′(𝐷(𝑥))
𝑖𝑗

= 1}, 

Equation 6 

𝐴𝑙 = {𝑙1, 𝑙2, … , 𝑙|𝐴𝑝|}, 
 

where 𝐴𝑝 represents the grid coordinates of the marked 

point-process, 𝐴𝑟  represents the corresponding radii of the 

marked point-process, while 𝐴𝑙  is a collection of the anchor 

point labels corresponding to the unique connected areas in 

the image (color coded in Figure 7). Putting the coordinates 

and the 2 marks together, we end up with an 𝑛𝑝 ×  4 vector 

representation of the binary image: [𝐴𝑖
𝑝, 𝐴𝑗

𝑝 , 𝐴𝑟 , 𝐴𝑙].   



 

 

C. Marked point-process representation to PointSSIM 

scalar 

Given the marked point-process vector provided in 

the previous section we present four measures that capture 

features of the binary image, which help construct the 

PointSSIM metric. 

Anchor count 

 

The first measure is calculated as the number of 

unique anchor points in the image, 

 

Equation 7 

𝑉1(𝑥) = |𝐴𝑝|. 
It summarizes the intensity of points in the image. 

 

Area coverage 

 

The second measure counts the sum of the squared 

radius marks (proportional to the area of the circle) for the 

marked point-process, and scales against the area of the 

image, giving a dimensionless measure. This global 

measure relates to the foreground proportion in the image 

(+ some circle overlap), 

Equation 8 

𝑉2(𝑥) =
∑ 𝐴𝑖

𝑟 2|𝐴𝑟|
𝑖=1

𝐿x ⋅ 𝐿y

. 

 

Anchor points per object 

 

The third measure evaluates the average number of 

anchor points per object: 

 

Equation 9 

𝑉3(𝑥) =  
𝑉1(𝑥)

max (A𝑙)
. 

Here, the number of objects in the image is max (A𝑙), as the 

objects are ordered from 1 to the number of objects. This 

measure is related to the heterogeneity of objects in the 

image. When this number is low it indicates homogeneous 

objects, a high number indicates heterogeneous objects. 

 

Spatial variance irregularity 

 

 The first three measures capture the basic 

parameterization of the marked point-process. The fourth 

measure assesses the point structure, focusing on the spatial 

correlation of the anchor points. This measure provides 

insights into the clustering, randomness, and structure of the 

points. Given how the marked point-process is defined in 

this context, classical measures of spatial point clustering, 

such as Moran’s I (Moran, 1950), are inappropriate. This is 

because Moran’s I is designed for assessing spatial 

clustering of points, whereas in this context, anchor points 

are inherently separated due to the repulsive effects of local 

adaptivity and the separation of objects. Therefore, we need 

to define clustering differently. 

 

We compare the distribution of points to a Poisson 

point-process (Daley & Vere-Jones, 1990). In a Poisson 

point-process, the number of points in an area  𝐵  follows a 

Poisson distribution with mean 𝜆|𝐵|, where 𝜆 is the 

intensity of points. It can be assessed by 𝜆 =  
𝑛

|𝐴|
, where 𝑛 

is the total number of points in the domain, and |𝐴| is the 

area of the domain. 

 

Given the theoretical variance, we compare it to 

the empirical variance by splitting the entire domain into 
several disjoint quadratic subregions B and then counting 

the number of anchor points within these. In this work, we 

use 100 subregions, meaning we split our domain into 

10x10 subregions, which seems to work well empirically. 

We compute the empirical variance for all such 

counts. To normalize the measure, we take the difference 

between the empirical variance and the theoretical variance, 

divided by their sum. This gives a measure that can take 

values in the range [−1,1] . To normalize the measure to 

the range [0,1] we add 1 and divide by 2. This simplifies to 

the following measure: 

 

Equation 10 

𝑉4(𝑥) =  
1

1 +
𝜆|𝐵|

𝑠2

, 

where: 

• 𝑠2  is the empirical variance in the number of anchor 

points within subregions, 

• 𝜆|𝐵| =
𝑛

100
 is the theoretical variance, 

• |𝐵|  is the area of a quadratic subregion, which is 
𝐿x𝐿y

100
. 

 

We calculate 𝑠2 as, 

 

Equation 10 

𝑠2 =
1

𝑛
∑(𝑛𝑖 − 𝑛�̅�)

2

𝑛

𝑖=1

, 

here 𝑛𝑖 is the collection of anchor points in subregion 𝑖.   
 

Figure 8 is an illustration of the measure for 3 

different binary images. When the 1-valued pixels are 

evenly spaced, the variance between subregion counts is 0 

and the measure is 0, if the 1-valued pixels are randomly 

placed the measured and expected variance is the same, 

giving a value close to 0.5, and if the 1-valued pixels are 

clustered the measured variance is much larger than the 

expected such that the contribution from the expected 

variance becomes negligible and the measure gets close to 

1.  

 



 

 

  
Figure 7: Illustration of the variance irregularity measure for three different binary images. The left display represents a 

structured arrangement of points, the middle image represents a random arrangement of points and the image to the right 

represents a clustered arrangement of points. Each of the images have a structure score (ranging from 0 to 1) representing the 

degree of clustering in the image. 

 

Given the four measures, we represent the binary 

images as 4-dimensional vectors that can be compared 

among each other to capture structural similarity with the 

PointSSIM metric. We employ a reference-free form of 

comparison, like in SSIM (Wang et al. 2004). The 

Euclidean distance between each measure is compared and 

normalized by the maximum value to yield a value between 

zero and one. The normalized distance of each measure is 

then averaged to provide a comparison value. For 

comparing two images 𝑥1 and 𝑥2 we have metric: 

Equation 11 

𝑃𝑜𝑖𝑛𝑡𝑆𝑆𝐼𝑀(𝑥1, 𝑥2)
=  1

−
1

4
(∑

(𝑉𝑖(𝑥1) − 𝑉𝑖(𝑥2))
2

max(𝑉𝑖(𝑥1), 𝑉𝑖(𝑥2))
2

 

3

𝑖=1

+ (𝑉4(𝑥1) − 𝑉4(𝑥2))
2

), 

we avoid double normalization of 𝑉4(⋅) by putting it outside 

the sum. This metric gives values in the range [0,1], where 

0 represents no structural similarity, and 1 represents full 

structural similarity in the marked point-process vector 

space.  

 

 

 

III. RESULTS 

A. Test Image Scenarios 

 

 To assess the performance of the proposed 

PointSSIM metric, we evaluated it across a range of 

simulated binary images designed to capture various 

structural patterns. The primary goal was to see how well 

PointSSIM captures the similarities and differences 

between images of different types and structures, 

particularly in scenarios where traditional methods might 

struggle. One key consideration is the number of anchor 

points: PointSSIM relies on enough anchor points being 

present in the image to generate meaningful statistical 

comparisons. For example, if large continuous objects 

cover most of the image, there may be too few anchor 

points to reliably capture structural differences, leading to 

increased variance in the metric. 

 

We considered five distinct types of image scenarios, each 

containing multiple objects. We generated 50 realizations 

for each dataset to evaluate the performance of PointSSIM. 

The datasets used for comparison include: 

 

• MPS images: These were generated using 

Multiple-Point Statistics to emulate geological 

binary surfaces. 

 
Figure 8: Multiple-Point Statistics binary images. 

• TGRF images: Truncated Gaussian Random Field 

realizations were used, which include nested 

variograms.

 
Figure 9: Truncated Gaussian Random Field images. 

• Structured ellipses images: These images consist 

of ellipses arranged in a grid in a highly structured 

manner. 

 
Figure 10: Structured ellipses images. 

• Distorted ellipses images: These images feature 

ellipses placed randomly in a grid with some 



 

 

added Gaussian noise to distort their shapes.

 
Figure 11: Randomly placed ellipses images. 

• Mixture of ellipses and circles: These images 

include a mix of ellipses and circles with 

overlapping objects, restricted to certain areas of 

the image (corners). 

 
Figure 12: Mixture of circles and ellipses images, allowing for 
overlap and restricted to corners of the image. 

These scenarios were chosen to test how well 

PointSSIM differentiates between images with varying 

structural complexities, object arrangements, and noise 

levels. The ability to handle both structured and random 

configurations is critical for geostatistical applications, 

where image structures can vary significantly. 

 

B. Results with Test Images 

 

Figure 14 shows histograms and scatterplots of all 

four key measures for each image scenario, allowing us to 

observe the separation between datasets. From these plots, 

PointSSIM effectively distinguishes between the different 

image scenarios, and the measures themselves are not 

redundant, meaning no two measures have strong 

correlations. This independence between measures is 

important because it ensures that PointSSIM captures a 

variety of structural aspects of the images, rather than over-

emphasizing a single characteristic. 

 

In particular, the structured ellipses dataset shows 

zero variance in the measures across its 50 realizations. 

This is as expected because each realization is a direct copy 

of the original structure. By contrast, both the TGRF and 

MPS datasets display much higher variance, reflecting the 

greater diversity in structures between individual 

realizations. This result highlights how PointSSIM can 

effectively capture and quantify both structured and 

irregular spatial patterns. 

 

 

  
 

Figure 13: Histograms of all 5 datasets (Figure 9-13) for each of the measures along the diagonals of the Figure. The rows represent the 
combinations of two measures with the individual data points represented as colored markers.  



 

 

 

In Figure 15, we compare PointSSIM against three 

other popular metrics: SSIM, MSE, and MS-SSIM. The 

violin plots show the distribution of metric values for 

pairwise comparisons between the different datasets. Each 

subplot represents a different dataset combination, with 

PointSSIM, SSIM, MSE, and Multiscale-SSIM values 

plotted in blue, orange, green, and red, respectively. 

  

 
Figure 15: The violin plot of the distribution of the PointSSIM (blue), MSE (yellow), SSIM (green) and MS-SSIM (red) values for each 
combination of datasets (Figure 9-13). Each combination of datasets are individual subplots, with a unique color for each metric. 

Several important observations can be made from this 

figure: 

 

• Within-class similarity: For each dataset, 

PointSSIM consistently returns a value close to 1 

for within-class comparisons (diagonal elements in 

the display), with minimal variance. This high 

within-class similarity indicates that PointSSIM 

can recognize and quantify structural consistency 

within these datasets more effectively than the 
other metrics. By contrast, SSIM, MSE, and MS-

SSIM often show lower within-class similarity, 

with greater variance, making them less precise. 

• Between-class differentiation: PointSSIM also 

excels at distinguishing between different image 

classes. In many cases, PointSSIM produces lower 

between-class similarity scores than SSIM, MSE, 

or MS-SSIM. This superior ability to differentiate 

between distinct datasets is critical for applications 

where accurate discrimination between image 

types is required, such as in geological modeling 
or pattern recognition. 



 

 

• Responsiveness to dataset combinations: In the 

first column of the violin plots, PointSSIM 

demonstrates a clear response to different 

combinations of datasets, with varying means and 

variances. This contrasts with the other metrics, 

which tend to produce similar responses for 

different dataset combinations, making it harder to 

distinguish between them. This indicates that 

PointSSIM is more sensitive to structural 

differences, allowing for finer-grained 

comparisons. 

 

C. Additional Resolution Experiment 

 

 One of the main advantages of PointSSIM is its 

resolution invariance, meaning the metric remains effective 

even when images are rescaled. This property is especially 

useful in geostatistics, where images of different resolutions 

need to be compared. To test this, we conducted an 

experiment where the mixture of ellipses and circles dataset 

was generated at three different resolutions: 256x256, 

512x512, and 1024x1024. For each resolution, 50 

realizations were generated, and the results were compared. 

 

Figure 16 shows five realizations for each 

resolution, illustrating how the objects are scaled across 

different resolutions. As the resolution increases, the edges 

of the objects become smoother, which naturally reduces 

the number of local maxima detected in the minimal 

distance transform. This reduction in anchor points could 

potentially affect the metric, but the PointSSIM method 

adapts well to these changes. 

 
Figure 16: 5 realizations of 256x256, 512x512 and 1024x1024 
resolution images. 

 

The histograms in Figure 17 display the measures 

for the three resolutions, confirming that the values overlap 

significantly across different resolutions. Figure 18 shows 

the individual images as scatter points for all measures, 

with the low and high resolution on the 𝑥- and 𝑦- axis. 

Ideally, all the scatter points would lie on the line 𝑦 =  𝑥. 

We observe that there are some fluctuations from this line, 

especially for the 3rd and 4th measure, where some points lie 

below the diagonal line. This is an effect of smoothing, 

where low resolution images have fewer nr. of pixels that 

can cause objects to merge as in Figure 17. Since measure 3 

is the same as measure 1 except that we divide by the 

number of objects, this causes the low-resolution images to 

have a lower value when objects are merged. While some 

small fluctuations are observed due to the smoothing effect 

between realizations, the measures consistently capture the 

structural integrity of the images, regardless of resolution. 

This demonstrates the robustness of the method in scenarios 

where pixel resolution varies, a significant improvement 

over pixel-based methods like MSE and SSIM, which are 

resolution-dependent.  

 

 
Figure 17: Histograms of all 3 datasets of different resolution (Figure 17) for each of the measures. 



 

 

 
Figure 18: Scatter plot of each measure for low vs high resolution.  

 

IV. DISCUSSION 

The results demonstrate that PointSSIM 

effectively distinguishes image scenarios, outperforming 

common metrics like SSIM, MSE, and MS-SSIM. By 

comparing point processes, we can compare across 

resolutions and create a rotation invariant measure. 

 

Compressing a binary image into four summary 

measures inevitably leads to some loss of detail. For 

example, two datasets with different object shapes (e.g., 

curved vs. straight in Figure 19 and 20) may not be fully 

distinguished by the current metric, as the curvature is not 

explicitly captured. This highlights the somewhat arbitrary 

nature of the chosen measures. While the four measures 

(anchor count, area coverage, anchor points per object, and 

spatial variance irregularity) provide a good summary for 

these datasets, other measures could be more appropriate in 

different contexts, depending on the specific structural 

features of interest. 

 

 
Figure 19: Binary images of curved objects 

 
Figure 20: Binary images of straight objects 

 

Additionally, relying on anchor points requires a 

sufficient number of these points to generate meaningful 

statistics. When there are too few anchor points, especially 

in images with large, continuous objects, the point-based 

summaries become overly sensitive and less reliable. This 

can lead to reduced robustness in distinguishing between 

images with subtle structural differences. 

 

The transformation of binary images into anchor 

points is efficient, but it involves a trade-off between detail 

and computational speed. While PointSSIM is effective for 

binary images, alternative methods like CW-SSIM (Sampat 

et al., 2009), which maps images to the frequency domain, 

may be better suited for more complex image types like 

RGB images, where finer pixel-level details matter. 

 

Despite these limitations, the flexibility of 

PointSSIM is a strength. The framework allows for 

adjustments at each stage. The measures derived from the 

point process can be tailored to look for specific features 

relevant for the task at hand. Likewise, the extraction of 

points and marks can be refined, and the choice of marks 

could also be different from what we have used here. This 

makes the core idea very adaptable for a wide range of both 

datasets and applications. 

V. CONCLUSION 

In this work, we introduced PointSSIM, a novel, low-

dimensional image-to-image comparison metric designed to 

be invariant to resolution and rotation. The metric 

compresses complex binary images into a marked point-

process representation, allowing us to capture essential 

structural information efficiently. By utilizing four key 

measures—anchor point intensity, area coverage, anchor 

points per object, and anchor autocorrelation—PointSSIM 

offers a robust and scalable method for comparing binary 

images across a range of structural scenarios. Our 

evaluations show that PointSSIM not only outperforms 

popular comparison metrics like SSIM, MSE, and MS-

SSIM but also exhibits the critical advantage of being 

resolution invariant. 

 

Despite its strengths, PointSSIM has limitations. The 

compression of binary images into four summary measures 

inherently leads to some loss of information, meaning that 

certain image characteristics, such as fine geometric details 

or subtle shape variations (e.g., curvature differences), may 

not be fully captured. The method works best when there 

are enough anchor points in the image, which typically 

requires a reasonable number of objects or distinct features. 

In images where the number of anchor points is low, or 

when large continuous objects dominate the scene, the 

resulting point-based summaries may become overly 

sensitive to minor variations, reducing the robustness of the 

comparisons. 

 



 

 

While we have focused on four specific measures for 

PointSSIM, these are not exhaustive. The choice of these 

measures reflects a balance between efficiency and 

structural descriptiveness, but other measures could be 

explored to capture additional image properties, depending 

on the specific application. For example, integrating 

measures that better account for curvature, texture, or more 

complex spatial interactions could enhance the method's 

ability to distinguish between images with more intricate 

differences. However, incorporating additional measures 

must be done with caution to avoid redundancy and 

unnecessary complexity, as this could reduce 

interpretability and make the method harder to apply 

consistently. 

 

A valuable extension of this work would be to experiment 

with alternative transformations and measures that go 

beyond binary images, applying the PointSSIM framework 

to grayscale or RGB images. In such cases, anchor points 

could be selected based on other criteria, such as intensity 

gradients or color homogeneity, and then compared using 

an expanded set of measures. This would open the method 

to a broader range of applications, including medical 

imaging, geological analysis, and remote sensing, where 

preserving structure across scales is crucial. 
 

Additionally, the PointSSIM framework could serve as a 

foundational tool in machine learning contexts, particularly 

for training generative models. By incorporating structural 

measures alongside pixel-level accuracy, PointSSIM could 

act as a regularization term, ensuring that the structural 

integrity of generated images is preserved. This is 

particularly valuable in tasks such as image synthesis, 

where maintaining the underlying geometry or patterns of 

the training data is critical to the quality of the generated 

outputs. 

 

In summary, PointSSIM offers an efficient, scalable, and 

flexible approach to image comparison, particularly for 

binary images requiring structural analysis. Its resolution 

invariance, combined with its ability to represent images in 

a low-dimensional space, makes it a valuable tool for a 

wide range of geostatistical and image analysis 

applications. Future research should explore more 

sophisticated transformations and measures to further 

expand its applicability and utility, particularly in handling 

more complex datasets. 
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