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Plan for course 
Time  Topic 

Monday Introduction and motivating examples 

Elementary decision analysis and the value of information 

Tuesday Multivariate statistical modeling, dependence, graphs 

Value of information analysis for dependent models 

Wednesday Spatial statistics, spatial design of experiments 

Value of information analysis in spatial decision situations 

Thursday Examples of value of information analysis in Earth sciences 

Computational aspects 

Friday Sequential decisions and sequential information gathering 

Examples from mining and oceanography 

Every day: Small exercise half-way, and computer project at the end. 
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Spatial alternatives. 

Spatial uncertainties. 

Spatial value function. 

Spatial data. 



Information gathering 
.  

  Perfect Imperfect 

Total Exact observations are gathered for all 
locations. This is rare, occurring when 
there is extensive coverage and highly 
accurate data gathering. 

Noisy observations are gathered for all 
locations. This is common in situations with 
remote sensors with extensive coverage, e.g. 
seismic, radar, satellite data. 

Partial Exact observations are gathered at 
some locations. This might occur, for 
instance, when there is careful analysis 
of rock samples along boreholes in a 
reservoir or a mine. 

Noisy observations are gathered at some 
locations. Examples include hand-held (noisy) 
meters to observe grades in mine boreholes, 
electromagnetic testing along a line, biological 
surveys of species, etc. 
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Decision situations and values 
.  

Assumption: Decision Flexibility Assumption: Value Function 

Low decision flexibility; 
Decoupled value 

Alternatives are easily 
enumerated  

Total value is a sum of value at every unit 

High decision flexibility; 
Decoupled value 

None  Total value is a sum of value at every unit 

Low decision flexibility; 
Coupled value 

Alternatives are easily 
enumerated  

None 

High decision flexibility; 
Coupled value 

None None  
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Low versus high decision flexibility 
.  

High flexibility:  
Farmer can select individual 
forest units. 

Low flexibility:  
Farmer must select all forest 
units, or none. 



Decoupled versus coupled value 
.  

Value decouples to sum over units. 

Value involves complex coupling of 
drilling strategies, and reservoir 

properties. 

Petroleum company must decide how to 
produce a reservoir.  

Farmer must decide whether to harvest at 
forest units, or not.  
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Computation - Formula for VOI 

       max , |PoV E v p d  a Ay x a y y y

Computations : 
• Easier with low decision flexibility ( less alternatives).  
• Easier if value decouples (sums or integrals split). 
• Easier for perfect, total, information (upper bound on VOI).  
• Sometimes analytical solutions, otherwise approximations and Monte Carlo. 

Main challenge. 
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Techniques – Computing the VOI 
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Techniques : 
• Fully analytically tractable for two-action, Gaussian, linear models.  
• Analytical or partly analytical for Markovian models, graphs. 
• (Monte Carlo sample over data, analytical for inner expectation.) 
• Various approximations and Monte Carlo usually applicable. 
• Should avoid double Monte Carlo (inner and outer). Too time consuming. 

Outer integral. Inner integral. 
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Gaussian. 

Inner integral analytical. 
Linear combination of data. 
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Partly analytical, Monte Carlo for rest  
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Use sampling. 

Inner integral solved.   
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Examples of other approximations 

• Rock hazard example in mining : Laplace approximations. 
• Petroleum production example : Monte Carlo simulation and regression. 



 We will rock you – rock hazard example 

• Decisions about stabilizing rock 
mass.  
 

• Borehole information. How much 
and where? 
 

• Model is a represented by 
Gaussian process, with Poisson 
count measurements. 
 
 

• VOI analysis done by a Gaussian 
approximations and Laplace 
approximations. 
 



We will rock you – Spatial GLM 

Add support at tunnel 
locations where risk of rock 

fall is too high. 

What is the value of additional borehole 
information about spatial joint counts? 



We will rock you – Model 
.  

 1, , nx xx

Risk of rock fall is tied to the number of joints in rocks.  

   ,p Nx  

Spatial joint intensity. 

        | Poisson expi i i ip y x V xs s s

 1, , my yy Data are collected in boreholes.  
Design of boreholes is important. 



Values 
.  
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Approximations 
.  
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Evangelou and Eidsvik, 2017,  The Value of Information for correlated GLMs, JSPI,  p 30-48. 
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Gaussian approximation, 
Laplace approximation, 
and matrix approximation. 



Approximations (ii) 
.  
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Evangelou and Eidsvik, 2017,  The Value of Information for correlated GLMs, JSPI,  p 30-48. 



Approximations (ii) 
.  
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1. Compute the log Gaussian expectation. 

Exercise: 



Results – data gathering options 

    .VOI PoV PV y y

Study the value of different borehole information, and compared with the prices. 

o Test half of planned boreholes, with half of samples (every other). 
o Test quarter of boreholes, with dense sampling.  
o Do no testing. 



Results – decision regions 

 1 1 2 2arg max 0,VOI ,VOIP P 

We here gather the data that is most valuable compared with its price.  
 
This data gathering decision could also be made according to a budget. Then we 
collect data that has the largest VOI, as long as it is less than the budget.  

No testing. 



Results 

 Half-half Half-half Quarter Quarterarg max 0,VOI ,VOIP P 

P1 and P2 depend on the length of boreholes, and number of tests. 
The number of tests are here the same for the two data gathering options. 
Half-half drills about twice as long as the Quarter option. 



Wrap up 

• Analytical expressions allows fast computations, and eases sensitivity analysis, etc.  
• Approximations must be checked (time consuming MCMC, asymptotics, etc.) 

 
• VOI of subset testing can be effective when there is correlation. Two dense data 

samples does not give double information.  



 Reservoir dogs - petroleum example 

• Decisions about drilling 
alternatives. 
 
 

• Seismic information. Which kind? 
 

• Model is a represented by spatial 
process, obtained by simulations.  
 
 

• VOI analysis done by a simulation-
regression approach. 
 



.  
Fluid flow modeling example 

Most reservoir decisions require reservoir simulation, fluid 
flow is important for the value calculcation. 

Develop with a drilling plan, 
or not develop at all: 
 
 
Value computed from 
petroleum reservoir 
simulation. 

 0,..,9a 

 ,v ax

Dutta et al., 2017. 



Reservoir flow in heterogeneous media 

Injection of 
water, pushing 
oil out. 

Flow in the reservoir depends on 
the composition of rocks, 
porosity, permeability, faults, etc. 

Seismic data can help identify 
these important reservoir 
properties. Very non-linear relations! 
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Computation - Formula for VOI 

       max , |PoV E v p d  a Ay x a y y y

Computationally challenging: 
• No decoupling in space. Joint optimization over all alternatives.  
• Non-linear value function and seismic data. 



Prior - Reservoir uncertainty 

This distribution of reservoir 
variables is usually represented by 
multiple Monte Carlo realizations 
from the prior distribution.  

Sample 1 

Sample 1000 …………. 

 p xPrior is            . 



.  

Flow simulation and value 

 , , 1,...,1000bv b x a

Flow simulation gives amount of 
recoverable oil, for each 
realization, with the development 
cost subtracted. 



.  

Likelihood - Seismic data 

, 1,...,1000,b b yThe likelihood is non-linear, but we 
can generate synthetic seismic data 
from the likelihood model, given 
realizations of reservoir properties. 

    | ,p Ny x g x T



Linking variables 

Complex geology 

Seismic model 

Fluid flow model 



.  

Value and seismic data 

, 1,...,1000,b b y

-     Random draws of geologic scenario 
(meandering channels or delta): 
- Draw rock-type realizations 
- Draw porosity realizations 
- Draw permeability realizations 
- Draw value by fluid flow simulation and 

economics 
- Draw seismic data using physics 

We next use these samples for VOI approximation. 



Computation 
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• Monte Carlo (outer) and simulation-regression for inner expectation!  
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Inner expectation: |x y

Outer expectation: y



Simulation-regression algorithm 
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Inner expectation 

Outer expectation 

1. Simulate uncertainties: 
 

2. Simulate values, for all alternatives: 
 

3. Simulate data: 
 

4. Regress samples to fit conditional mean:   
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.  

  10-20 Hz seismic 10-40 Hz 
seismic 

10-60 Hz seismic 

VOI  578 (555-590) 583 (560-600) 585 (565-600) 

Regression results  

VOI only very large, but slightly larger for more detail in the seismic data, since 
we are interested in ‘overall’ flow properties. 

 , , 1,...,1000,b bv b  a y a A

We use partial least squares (PLS) regression, useful for the 
large-size seismic data sets. 



Wrap up 

• The type of simulation and regression would be very case specific.  
• If there are lots of alternatives, some kind of clustering of alternatives should be 

used. 
  
• VOI approximation is difficult to check, but bootstrap (or bagging) can be used to 

study uncertainty, and to do sensitivity over different regression models.  



Project case : alternatives 

Suppose there is a 25 x 25 grid of reservoir variables. We want to flood the reservoir 
either from the west, or from the south.  

Alternative 1 source. 

Alternative 2 
source. 

Sink. 



Project case : models 

There is uncertainty in the reservoir properties, possibly a channel with larger 
permeability in the middle, and some heterogeneity.   
  
We can sample from the model as follows:  

• Draw a regression parameter: 
 
 

• Draw a Gaussian process on the 25 x 25 grid: 
 
 
 

• Permeability is log-Gaussian: 
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  Gamma(1,1)b p  
Use gamrnd or rgamma 

Use Cholesky method 
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Project case : models 
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s s Variability due to the regression 
uncertainty and the spatial 
heterogeneity. 

Two permeability realizations 



Project case : values 

Value is set as the time-of-flight: time it takes a particle to travel from the source to the 
sink. Smaller is better, larger ‘value’. (This is used as a proxy for flow.) 
  
For each alternative (west or south), we compute time-of-flight as follows:  

1,...,b B

ai

b

a
i

il

d
x

v



Distance is 1 for ‘west’ 
alternative, 1.5 for ‘south’ 
alternative.  

Sum inverse permeability variables along the line. 
Large permeability, smaller time of flight. 



Project case : data 

Data is the log-ratio of the variability in the center N-S line compared with the center 
E-W line. (This might be a result of processing seismic data.) 
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Large data. 
Small data. 



Project case : regression 

Estimate the conditional expected values by simple linear regression, using the 
samples of values and data. Do this for both ‘west’ and ‘south’ alternative. 
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Project case : VOI approximation 
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to depend on high or 
low data. This should 
give positive VOI. 


