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Plan for course 
Time  Topic 

Monday Introduction and motivating examples 

Elementary decision analysis and the value of information 

Tuesday Multivariate statistical modeling, dependence, graphs 

Value of information analysis for dependent models 

Wednesday Spatial statistics, spatial design of experiments 

Value of information analysis in spatial decision situations 

Thursday Examples of value of information analysis in Earth sciences 

Computational aspects 

Friday Sequential decisions and sequential information gathering 

Examples from mining and oceanography 

Every day: Small exercise half-way, and computer project at the end. 



Dependence? Does it matter? 

Gray nodes are 
petroleum 
reservoir 
segments 
where the 

company aims 
to develop 
profitable 

amounts of oil 
and gas. 

Martinelli, G., Eidsvik, J., Hauge, R., and Førland, M.D., 2011, Bayesian networks for prospect 
analysis in the North Sea, AAPG Bulletin, 95, 1423-1442. 



Drill the exploration well at this segment! 
The value of information is largest. 

Gray nodes are 
petroleum 
reservoir 
segments 
where the 

company aims 
to develop 
profitable 

amounts of oil 
and gas. 

Dependence? Does it matter? 



Joint modeling of multiple variables 

B 

C A 

Spatial variables are often not independent! 
 
To study if dependence matter, we need to model the joint 
properties of uncertainties. 
 
• What is the probability that variable A is 1 and, at the 

same time, variable B is 1 ? 
• What is the probability that variable C is 0, and both A 

and B are 1 ? 



Joint pdf 
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Multivariate statistical models 
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The joint probability mass or density function (pdf) 
defines all probabilistic aspects of the distribution! 
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Marginal and conditional probability 
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Conditioning in joint pdf. 

Marginalization in joint pdf. 

Conditional mean and variance 



Marginalization 

( , )x x x

   p p d x x x

1x

 1p x



Conditional probability 

Venn diagram 
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Conditional probability 
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   |p px x x Independence! 

Must hold for all outcomes and 
for all subsets! 

Unrealistic in most applications! 



Modeling by conditional probability 

A 

       1 2 1 1 1| ... | ,...,n np p x p x x p x x xx

Holds for any ordering of variables.  

The joint pdf can be difficult to model directly.  
Instead we can build the joint pdf from conditional distributions.  
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Modeling by conditional probability 

A 

     |p p px x x x

Modeling by conditionals is done by conditional statements, not joint assessment:  
 
• What is likely to happen for variable K when variable L is 1? 
• What is the probability of variable C being 1 when variables A and B are both 0? 

 
Such statements might be easier to specify,  
and can more easily be derived from physical principles. 



Modeling by conditional probability 

A 

       1 2 1 1 1| ... | ,...,n np p x p x x p x x xx

Holds for any ordering of variables. Some conditioning variables can often be skipped.  
Conditional independence in modeling.  

This simplifies modeling and interpretation! And computing! 



Modeling by conditional probability 
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• What is the chance of success at B, when there is success at parent P?  
• What is the chance of success at B, when there is failure at parent P? 

 

P 

B 

C A 

Conditional independence: 
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Must set up models for all nodes, using marginals for root nodes, and 
conditionals for all nodes with edges. 



Bayesian networks and Markov chains 



Bayesian networks and Markov chains 
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Bayesian networks and Markov chains 
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.  
Bivariate petroleum prospects example 

Conditional 
independence between 
prospect A and B, given 
outcome of parent! 

Similar network models 
have been used in 
medicine/genetics, and 
testing for heritable 
diseases. 

 0,1 , 1,2,3ix i 



Exercise: Bivariate petroleum prospects 
example 

 
1. Compute the conditional probability at prospect A, when one knows the 

success or failure outcome of prospect B. 
2. Compare with marginal probability. 

 0,1 , 1,2,3ix i 

Exercise: 



Bivariate petroleum prospects example 
.  

Joint  Failure prospect B Success prospect B Marginal probability 

Failure prospect A 0.85 0.05 0.9 

Success prospect A 0.05 0.05 0.1 

Marginal probability 0.9 0.1 1 



.  
Example - Bivariate petroleum prospects 

Collect seismic data :VOI - Should data be collected at both prospects, or 
just one of them? Partial or total? Imperfect or perfect? 



.  

Need to frame the decision situation:  
• Can one freely select (profitable) prospects, or must both be selected.  
• Does value decouple?  
• Can one do sequential selection?  

 
 

Need to study information gathering options:  
• Imperfect (seismic), or perfect (well data)?  
• Can one test both prospects, or only one (total or partial)?  
• Can one perform sequential testing?  

Bivariate petroleum prospects 



.  

Need to frame the decision situation:  
• Can one freely select (profitable) prospects, or must both be selected. Free selection. 
• Does value decouple? Yes, no communication between prospects. 
• Can one do sequential selection? Non-sequential. 

 
 

Need to study information gathering options:  
• Imperfect (seismic), or perfect (well data)?  Study both. 
• Can one test both prospects, or only one (total or partial)? Study both. 
• Can one perform sequential testing? Not done here. 

Bivariate petroleum prospects 



Bivariate prospects example - perfect 
.  

Assume we can freely select (develop) prospects, if profitable. 
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information 



Bivariate prospects example - perfect 
.  

Assume we can freely select (develop) prospects, if profitable. 
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.  

 |j jp y k x k k      

Bivariate prospects example - imperfect 

Define sensitivity of seismic test (imperfect): 



Bivariate prospects example - imperfect 
.  

Assume we can freely select (develop) prospects, if profitable. 
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Total imperfect 
information 

Can also purchase imperfect partial information i.e. about one of the prospects? 



.  
VOI for bivariate prospects example 

Imperfect total better then partial perfect. Partial perfect is better than imperfect total.  



.  
VOI for bivariate prospects example 

Imperfect total better then partial perfect. Partial perfect is better than imperfect total.  

Price of test is 0.3 



.  
Insight in VOI – Bivariate prospects 

• VOI of partial testing is always less than total testing, with same accuracy.  
 

• Total imperfect test can give less VOI than a partial perfect test. Difference depends 
on the accuracy, prior mean for values, and correlation in spatial model.  

 
 

• VOI is small for low costs (easy to start development) and for high cost (easy to avoid 
development). We do not need more data in these cases. We can make decisions 
right away. 



Martinelli, G., Eidsvik, J., Hauge, R., and Førland, M.D., 2011, Bayesian networks for prospect 
analysis in the North Sea, AAPG Bulletin, 95, 1423-1442. 

Larger networks - computation 

Algorithms have been developed for efficient 
marginalization, conditioning. 



VOI workflow 

• Develop prospects separately. 
Shared costs for segments within 
one prospect.  

• Gather information by exploration 
drilling. One or two wells. No 
opportunities for adaptive testing. 

• Model is a Bayesian network 
model elicited from expert 
geologists in this area. 

• VOI analysis done by exact 
computations for Bayesian 
networks (Junction tree algorithm 
– efficient marginalization and 
conditioning).  
 



.  
Bayesian network , Kitchens 

Model elicited from experts.  
Migration from kitchens. 
Local failure probability of migration. 



.  
Prior marginal probabilities 

Three possible 
classes at all 
nodes: 
• Dry 
• Gas 
• Oil 



.  
Prior values 
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Cost of drilling 
segment i. 



.  
Values 

Most lucrative. But might not 
be most informative. 



.  
Posterior values and VOI 
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.  
VOI single wells 

Development fixed cost. 



.  
VOI for different costs 

Development fixed cost. 



.  
VOI for different costs 

• For each segment VOI starts at 0 (for 
small costs), grows to larger values, 
and decreases to 0 (for large costs). 

• VOI is smooth for segments 
belonging to the same prospect. 
Correlation and shared costs. 

• VOI can be multimodal as a function 
of cost, because the information 
influences neighboring segments, at 
which we are indifferent at other 
costs.  



.  Take home from this exercise: 

• VOI is not largest at the most lucrative prospects.  
• VOI is largest where more data are likely to help us make better decisions. 
• VOI also depends on whether the data gathering can influence neighboring 

segments – data propagate in the Bayesian network model. 
 

• Compare with price? Or compare different data gathering opportunities, and provide 
a basis for discussion.  



Never break the chain - Markov models   

Markov chains are special graphs, defined by initial probabilities and 
transition matrices. 

         1 2 1 2 1 1, ,..., | ... |n n np p x x x p x p x x p x x  x

 

   

1

1

, 1,...,

| , , , 1,...,i i

p x k k d

p x l x k P k l k l d

 

   

0.9 0.1

0.1 0.9
P

 
  
 

0.5 0.5

0.5 0.5
P

 
  
 

0.9 0.1

0.5 0.5
P

 
  
 

1 0

0.1 0.9
P

 
  
 

Independence Absorbing 

2d 



Markov chains (given perfect information) 



Never break the chain - Hidden Markov model 

Latent variable is a Markov chain. This forms the prior model. 
Data are measured, imperfectly, at all or some of the variables. 
 
- Commonly used for speech recognition, translation, cleaning signals, etc. 



Modeling by conditional probability 

A 
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   | |j j

j
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Conditionally independent data. Data measures the local properties:  
When the latent variable at that location is known, there is nothing to add by 
knowing other variables.  

Prior: 

Likelihood: 



Hidden Markov model 
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Avalanche decisions and sensors 
Suppose that parts along a road or railroad are at risk of avalanche.  
- One can remove risk by cost. 
- If it is not removed, the repair cost depends on the unknown risk class. 

 
Data, typically putting out sensors, can help classify the risk class and hence improve the 
decisions made at different locations. 
 

 
 



Avalanche decisions - risk analysis 
n=50 identified locations, at risk of avalanche.  
At every location one can remove risk by cost 10. 
If it is not removed, the repair cost depends on the unknown risk class: 
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Decision maker can secure, or not, at each location. The decisions are 
based on the minimization of expected costs.  
 
Prior value: 



Never break the chain - Prior model 
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Never break the chain - Data model 
Sensors at some or all of the n=50 identified locations. 
Likelihood model: 
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Posterior value: 

2 21000i 

2 1i Site is measured by sensor: 
 
Site is not measured by sensor:  

This is a trick to make the forward-backward algorithm easier to implement. 



Forward-backward algorithm 

Recursive forward step (prediction and updating): 
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Forward-backward algorithm 

Recursive backward step : 
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Monte Carlo approximation for VOI 
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1. Sample B Markov chain variables, and next sample B data vectors.  
- The samples will be from the marginal distribution for the data. 

2. Compute the marginal posterior probabilities by forward-backward algorithm for 
each data sample. 
 
 

Average the results to approximate posterior value and VOI. 



Results – one realization 



Results – different tests 

All sites Only 10 
first 

Only 11-
20 

Only 21-
30 

Only 31-
40 

Only 41-
50 

126 36 69 87 91 82 

Partial tests can be very valuable! Especially if they are done in 
interesting subsets of the domain. 

Only every second (5 measurements) 
gives VOI=83. 



Plan for course 
Time  Topic 

Monday Introduction and motivating examples 

Elementary decision analysis and the value of information 

Tuesday Multivariate statistical modeling, dependence, graphs 

Value of information analysis for dependent models 

Wednesday Spatial statistics, spatial design of experiments 

Value of information analysis in spatial decision situations 

Thursday Examples of value of information analysis in Earth sciences 

Computational aspects 

Friday Sequential decisions and sequential information gathering 

Examples from mining and oceanography 

Every day: Small exercise half-way, and computer project at the end. 



Project 2 : Markovian risk of avalanche 
 
Implement a Markov chain example for avalanche risk 1 or 2, with VOI analysis. 
At every location one can remove risk by cost 10. If it is not removed, the repair cost 
depends on the unknown risk class: 
 

 
 

- Compute marginal probabilities for the following Markov chain with initial state 
probability and transition probability:  
 
 
 
 
 
 

- Condition on risk-class 1 or 2 (perfect information) at node 20. Compute 
conditional probabilities. Compare with marginal probabilities. 

- Compute the prior value. Compute the posterior value and VOI for different single 
locations perfect observations. What is the best place to survey? 
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Results – marginals 
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Results – conditionals (forward) 
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Results – conditionals (backward) 
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Results – VOI 
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