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Plan for course 
Time  Topic 

Monday Introduction and motivating examples 

Elementary decision analysis and the value of information 

Tuesday Multivariate statistical modeling, dependence, graphs 

Value of information analysis for dependent models 

Wednesday Spatial statistics, spatial design of experiments 

Value of information analysis in spatial decision situations 

Thursday Examples of value of information analysis in Earth sciences 

Computational aspects 

Friday Sequential decisions and sequential information gathering 

Examples from mining and oceanography 

Every day: Small exercise half-way, and computer project at the end. 



Geostatistics (Kriging) 

What is the value of this 
additional information? 

Is mining profitable? 



Joint pdfs 

There are families of joint pdfs. Parametrically, or non-parametrically.  
 
Gaussian distribution is very common: 

   

11 12 1

21 22 21

1 2

...

..
,

.. .. .. ..

..

n

n n nn

p N

   
 
    
 
 
   

0x   

For a Gaussian process, in a spatial application, the covariance entries are 
formed in a particular way. 



Spatial covariance functions 
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Model Covariance 

Exponential 

Matern 3/2 

Cauchy-
type 

Gaussian 
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Example - Gaussian process 

Model Covariance 

Exponential 

Matern 3/2 

Cauchy-type 

Gaussian 
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Design 
matrix: 
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Gaussian process - model 
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Norwegian wood - forestry example 
.  

Where to put survey lines for timber volumes  information? 
Typically partial, imperfect information. 

Farmer must decide whether to harvest 
forest, or not. There is uncertainty about 
timber volumes and profits over the 
spatial domain. 
 
Another decision is whether to collect 
data before making these decisions.  
If so, how and where should data be 
gathered. 



Norwegian wood - posterior 
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F
Design 
matrix: 

This is Kriging prediction and associated variance. 



Norwegian wood – posterior results 
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Norwegian wood –  information 

We can base data gathering schemes on 
different criteria  
• Maximum variance reduction 
• Maximum entropy 
• Value of information (VOI) 

VOI is based on decision situation! 
Others are not material – not tied to decision situation. 



Spatial design 

• Geometric criterion (space-filling design). 
o Minimize average distance between data locations. 
o Set a threshold on minimum distance to nearest data location.  

     Challenging to compare various data accuracies.  
• Variance reduction criterion. 
• Kriging-related criteria (slope and weight of mean). 
• Entropy reduction criterion. 
• Prediction error. 

 



Variance reduction 

Expected variance reduction: 
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Could use a weighted sum, or choose a subset of variables for prediction.  



Variance reduction (Kriging) 

Overall variance 
reduction is larger for 
the random design. 
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Other criteria tied to Kriging 

• Slope of regression : Regression between the predicted and true 
(block) variables.  
 
 
 
 

• Weight of the mean : The relative impact (for blocks), of regression 
versus that of Kriging.   
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Entropy (Shannon) 
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Expected mutual information:  



Entropy of a Gaussian 
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Very commonly used in the design of spatial experiments 
(air quality monitoring, river monitoring networks, etc.) 



Entropy of a Gaussian 
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1. Compute the entropy of a bivariate standard Gaussian (with no correlation). 
2. Adjust the correlation so that a Gaussian bivariate model with variance equal to 

1.5 gets the same entropy as the standard Gaussian in 1.. 

Exercise: 
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Entropy blind-spot 
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VOI - Pyramid of conditions 

Pyramid of conditions  - VOI is different from other information criteria (entropy, 
variance, prediction error, etc.) 

ECONOMIC 
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Spatial alternatives. 

Spatial uncertainties. 

Spatial value function. 

Spatial data. 



Information gathering 
.  

  Perfect Imperfect 

Total Exact observations are gathered for all 
locations. This is rare, occurring when 
there is extensive coverage and highly 
accurate data gathering. 

Noisy observations are gathered for all 
locations. This is common in situations with 
remote sensors with extensive coverage, e.g. 
seismic, radar, satellite data. 

Partial Exact observations are gathered at 
some locations. This might occur, for 
instance, when there is careful analysis 
of rock samples along boreholes in a 
reservoir or a mine. 

Noisy observations are gathered at some 
locations. Examples include hand-held (noisy) 
meters to observe grades in mine boreholes, 
electromagnetic testing along a line, biological 
surveys of species, etc. 
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Decision situations and values 
.  

Assumption: Decision Flexibility Assumption: Value Function 

Low decision flexibility; 
Decoupled value 

Alternatives are easily 
enumerated  

Total value is a sum of value at every unit 

High decision flexibility; 
Decoupled value 

None  Total value is a sum of value at every unit 

Low decision flexibility; 
Coupled value 

Alternatives are easily 
enumerated  

None 

High decision flexibility; 
Coupled value 

None None  
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Decoupling – values are sums 
.  

Assumption: Decision Flexibility Assumption: Value Function 

Low decision flexibility; 
Decoupled value 

Alternatives are easily 
enumerated  

Total value is a sum of value at every unit 

High decision flexibility; 
Decoupled value 

None  Total value is a sum of value at every unit 

Low decision flexibility; 
Coupled value 

Alternatives are easily 
enumerated  

None 

High decision flexibility; 
Coupled value 

None None  
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Profit is sum of timber volumes from units. 



Low versus high decision flexibility 
.  

High flexibility:  
Farmer can select individual 
forest units. 

Low flexibility:  
Farmer must select all forest 
units, or none. 



Decoupled versus coupled value 
.  

Value decouples to sum over units. 

Value involves complex coupling of 
drilling strategies, and reservoir 

properties. 

Petroleum company must decide how to 
produce a reservoir.  

Farmer must decide whether to harvest at 
forest units, or not.  
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Computation - Formula for VOI 
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Computations : 
• Easier with low decision flexibility ( less alternatives).  
• Easier if value decouples (sums or integrals split). 
• Easier for perfect, total, information (upper bound on VOI).  
• Sometimes analytical solutions. Otherwise approximations and Monte Carlo. 
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Formula for total perfect information 
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Upper bound on any 
information gathering scheme. 



I love rock and ore – mining example 

What is the value of this 
additional information? 

Is mining profitable? 



VOI workflow 

• Low decision flexibility. De-coupled 
value function. 

• Gather information by XRF or 
XMET in boreholes. No 
opportunities for adaptive testing. 

• Model is a spatial Gaussian 
process.  

• VOI analysis done by exact, 
Gaussian, computations. 
 



Decision situation and data 

Mining blocks. Some waste 
rock. Some high-grade. 

Planned 
boreholes. 



Information gathering 

Planned 
boreholes. 

• Total test : 265 measurements in 21 new boreholes. 
• Partial test: Drilling and sampling data only in a subset of boreholes.  
• Perfect testing (XRF: done in lab). Imperfect testing (XMET: handheld meter). 



Prior model 



Model 



Prior and likelihood model 
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Results for design 

Comparing designs over different criteria: 
 
• All, 5 or 10 boreholes 
• XRF or XMET data 

 
 
 

• Geometric criterion, 
• Variance reduction, 
• Slope,  
• Weight of mean, 
• Entropy,  
• VOI, 



Results 
Relative criterion Geometric Krig Std Slope Weight Ent VOI 

5 XRF / All XMET 0.88 0.87 0.87 0.84 0.76 0.39 

5 XRF/ All XRF 0.88 0.85 0.82 0.81 0.41 0.27 

10 XRF / All XMET 0.94 0.96 0.97 0.95 1.21 0.94 

10 XRF / All XRF 0.94 0.93 0.91 0.91 0.72 0.64 

All XRF / All XMET 1 1.03 1.07 1.04 1.68 1.45 

All XRF / All XRF 1 1 1 1 1 1 
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VOI 
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Analytical solution under the Gaussian modeling assumptions. 

Weights set from block model(waste or ore). 



VOI : Decision regions XRF,XMET. 



VOI : Decision regions, partial data. 



.  Take home from this exercise: 

• Information connected to partial perfect testing can be less/more than total 
imperfect testing. 

• Information criteria depend on design and data accuracy. 
• Entropy appears to like perfect information. 
• VOI can be connected with decisions and prices (not so easy for other criteria). 

 
 
 



Norwegian wood - forestry example 
.  

Where to put survey lines for timber volumes  information? 
Typically partial, imperfect information. 

Farmer must decide whether to harvest 
forest units, or not.  
 
Another decision is whether to collect 
data before making these decisions.  
If so, how and where should data be 
gathered. 



Design 
.  

Where to put survey lines for timber volumes  information? 
Typically partial, imperfect information. 

Design matrix: 
Picks the measurement locations for a 
partial test.  
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imperfect test. 



.  
Three different designs 

Survey lines for timber volumes  information? 

Three data designs: 
• Total (all cells) 
• Partial (all cells along 

center lines) 
• Aggregate partial (sums 

along the two center 
lines). 



Gaussian process for value 
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Motivation, uncertainties on a grid - model profits directly 
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Forest units.  
Uncertainty is value in 
each cell.  

Global alternatives 

Local alternatives 



.  
Prior is Gaussian process 
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Matern covariance. 



Formulas for Gaussian models 
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Conditioning – Gaussian models 
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VOI – Gaussian models 
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Low flexibility:  
Must select all units, or none. 
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Value decouples to sum. 



.  
Results - Forestry example 

Total: all cells. Partial: Every cell along center lines. Aggregated partial: sums along center lines. 

Low flexibility:  
Must select all units, or none. 

(Results are normalized for area). 



.  
Insight in VOI from this example 

• Total test does not necessarily give much higher VOI than a partial test. It depends on 
the spatial design of experiment as well as the prior model (mean and dependence). 
 

• VOI increases with larger dependence in spatial uncertainties.  
 

• VOI is largest when we are most indifferent in prior (mean near 0 and large prior 
uncertainty. 
 

• VOI increases with higher accuracy of measurements.  
 



Project : Norwegian wood 

 
- Consider profits from timber in a forest split in many units. Profits are 

modeled as a Gaussian random field represented on a 25 x 25 grid for the 
625 units. The mean is m=0 at all cells, the covariance is exponential with 
st dev r=1 and correlation range r=40. Use the code to draw a random 
realization of this Gaussian process. 

 
- One can gather imperfect data at 100 random design locations, giving 

unbiased profit measurements, and independent error with st dev 0.5. 
Use the code to draw a random dataset.  
 

- Compute the Kriging prediction and the associated variances.  See code. 
 

- Compute the VOI (using the same data design) of the decision situation 
where the farmer harvest all units or none.  
 

- Compare the VOI results (using the same data design) for different prior 
mean, variances, correlation ranges and measurement noise terms.  


