
Gaussian Processes
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Schedule

I 17 Jan: Gaussian processes (Jo Eidsvik)

I 24 Jan: Hands-on project on Gaussian processes (Team effort, work
in groups)

I 31 Jan: Latent Gaussian models and INLA (Jo Eidsvik)

I 7 Feb: Hands-on project on INLA (Team effort, work in groups)

I 12-13 Feb: Template model builder. (Guest lecturer Hans J Skaug)

I To be decided...



Gaussian Processes

Motivation

Large spatial (spatio-temporal) datasets

Gaussian processes are very commonly used in practice.



Gaussian Processes

Motivation

Other contexts

I Genetic data

I Functional data

I Response surfaces modeling and optimization

Extremely common as building block in several machine learning
applications.



Gaussian Processes

Preliminaries

Univariate Gaussian distribution
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Y ∼ N(µ, σ2).

p(y) =
1√
2πσ

exp

(
−1

2

(y − µ)2

σ2

)
, y ∈ R.

Z =
Y − µ
σ

, Y = µ+ σZ .

Z is standard normal, mean 0 and variance 1.



Gaussian Processes

Preliminaries

Multivariate gaussian distribution

Size n × 1 vector Y = (Y1, . . . ,Yn)

p(y) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(y − µ)′Σ−1(y − µ)

)
, Y ∈ Rn.

Mean is E (Y ) = µ = (µ1, . . . , µn). Variance-covariance matrix is

Σ =

 Σ1,1 . . . Σ1,n

. . . . . . . . .
Σn,1 . . . Σn,n

 ,
Σi,i = σ2

i = Var(Yi ), Σi,j = Cov(Yi ,Yj), Corr(Yi ,Yj) = Σi,j/(σiσj).



Gaussian Processes

Preliminaries

Illustrations n = 2
- correlation 0.9 (left), independent (right).
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Gaussian Processes

Preliminaries

Joint for blocks

Y A = (YA,1, . . . ,YA,nA), Y B = (YB,1, . . . ,YB,nB ), joint Gaussian with
mean (µA,µB), covariance:

µ = (µA,µB), Σ =

[
ΣA ΣA,B

ΣB,A ΣB

]
,



Gaussian Processes

Preliminaries

Conditioning

E (Y A|Y B) = µA + ΣA,BΣ−1
B (Y B − µB),

Var(Y A|Y B) = ΣA −ΣA,BΣ−1
B ΣB,A.

Mean is linear in conditioning variable (data).
Variance is not dependent on data.



Gaussian Processes

Preliminaries

Illustration
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Figure: Conditional pdf for Y1 when Y2 = 1 or Y2 = −1.



Gaussian Processes

Preliminaries

Transformation

Z = L−1(Y − µ), Y = µ + LZ , Σ = LL′.

Z = (Z1, . . . ,Zn) are independent standard normal, mean 0 and variance
1.



Gaussian Processes

Preliminaries

Cholesky factorization

Σ =

 Σ1,1 . . . Σ1,n

. . . . . . . . .
Σn,1 . . . Σn,n

 = LL′,

Lower triangular matrix

L =


L1,1 0 . . . 0
L2,1 L2,2 . . . 0
. . . . . . . . . 0
Ln,1 Ln,2 . . . Ln,n

 ,



Gaussian Processes

Preliminaries

Cholesky - example

Σ =

[
1 0.9

0.9 1

]
, L =

[
1 0

0.9 0.44

]
.

Consider sampling from joint p(y1, y2) = p(y1)p(y2|y1):

I Sample from p(y1) is constructed by Y1 = µ1 + L1,1Z1.

I Sample from p(y2|y1) is constructed by
Y2 = µ2 + L2,1Z1 + L2,2Z2 = µ2 + L2,1

Y1−µ1

L1,1
+ L2,2Z2



Gaussian Processes

Processes

Gaussian process

For any set of time locations t1, . . . , tn. Y (t1), . . . ,Y (tn) is jointly
Gaussian.
Mean µ(ti ), i = 1, . . . , n.

Σ =

 Σ1,1 . . . Σ1,n

. . . . . . . . .
Σn,1 . . . Σn,n

 ,



Gaussian Processes

Processes

Covariance function

The covariance tends to decay with distance:

Σi,j = γ(|ti − tj |),

for some covariance function γ.
Examples:

γexp(h) = σ2 exp(−φh)

γmat(h) = σ2(1 + φh) exp(−φh)

γgauss(h) = σ2 exp(−φh2)



Gaussian Processes

Processes

Illustration of covariance function
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Gaussian Processes

Processes

Illustration of samples of Gaussian processes
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Gaussian Processes

Processes

Markov property

The exponential correlation function gives a Markov process.
For any t > s > u,

p(y(t)|y(s), y(u)) = p(y(t)|y(s)).

(Proof by trivariate distribution, and conditioning.)

E (Y A|Y B) = µA + ΣA,BΣ−1
B (Y B − µB),

Var(Y A|Y B) = ΣA −ΣA,BΣ−1
B ΣB,A.



Gaussian Processes

Processes

Conditional formula

E (Y A|Y B) = µA + ΣA,BΣ−1
B (Y B − µB),

Var(Y A|Y B) = ΣA −ΣA,BΣ−1
B ΣB,A.

I Expectation linear in data.

I Variance only dependent on data locations, not data.

I Expectation close to conditioning variables near data locations, goes
to µA far from data.

I Variance small near data locations, goes to ΣA far from data.

I Close data locations are not double data.



Gaussian Processes

Processes

Illustration of conditioning in Gaussian processes
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Gaussian Processes

Processes

Application of Gaussian processes: function optimization

Several applications involve very time-demanding or costly experiment.
Which configurations of inputs give highest output?
Goal is to find the optimal input without too many trials / tests.

Approach: Fit a GP to the function, based on the evaluation points and
results. This allows fast consideration of which evaluations points to
choose!



Gaussian Processes

Processes

Production quality : Current prediction

Goal: Find the best temperature input, to give optimal production.
Which temperature to evaluate next? Experiment is costly, want to do
few evaluations.



Gaussian Processes

Processes

Expected improvement

Maximum so far Y ∗ = max(Y ).

EIn(s) = E (max(Y (s)− Y ∗, 0)|Y )



Gaussian Processes

Processes

Sequential uncertainty reduction

Perform test at t = 40, result is Y (40) = 50.



Gaussian Processes

Processes

Sequential uncertainty reduction and optimization

Maximum so far Y ∗ = max(Y ,Yn+1).

EIn+1(s) = E (max(Y (s)− Y ∗, 0)|Y ,Yn+1)



Gaussian Processes

Processes

Project on function optimization using EI next week

Analytical solutions to parts of computational challenge.



Gaussian Processes

Gaussian Markov random fields

Precision matrix Q

Σ−1 = Q =

[
QA QA,B

QB,A QB

]
.

Q holds the conditional variance structure.



Gaussian Processes

Gaussian Markov random fields

Interpretation of precision

Q−1
A = Var(Y A|Y B),

E(Y A|Y B) = µA −Q−1
A QA,B(Y B − µB),

(Proof by QΣ = I .
Or by writing out quadratic form and p(Y A|Y B) ∝ p(Y A,Y B).)



Gaussian Processes

Gaussian Markov random fields

Sparse precision matrix Q

I For graphs the precision matrix is sparse.
I Qij = 0 if nodes i and j are not neighbors. Conditionally

independent.
I Qi,i±2 = 0 for exponential covariance function on a regular grid in

time.



Gaussian Processes

Gaussian Markov random fields

Sparse precision matrix Q

This sparseness means that several techniques from numerical analysis
can be used. Solve Qb = a quickly for b.



Gaussian Processes

Gaussian Markov random fields

Cholesky factorization of Q
Common method for sampling and evalution:

Q =

 Q1,1 . . . Q1,n

. . . . . . . . .
Qn,1 . . . Qn,n

 = LQL′Q ,

Lower triangular matrix

LQ =


LQ,1,1 0 . . . 0
LQ,2,1 LQ,2,2 . . . 0
. . . . . . . . . 0

LQ,n,1 LQ,n,2 . . . LQ,n,n

 ,
The Cholesky factor is often sparse, but not as sparse as Q, because it
holds only partial conditional structure, according to an ordering.
Sparsity is maintained for exponential covariance function in time
dimension (Markov).



Gaussian Processes

Gaussian Markov random fields

Sampling and evaluation using LQ

Q =

 Q1,1 . . . Q1,n

. . . . . . . . .
Qn,1 . . . Qn,n

 = LQL′Q ,

LQY = Z .

(Previously, for covariance we had Y = LZ .)

log |Q| = 2 log |LQ | = 2
∑
i

LQ,ii



Gaussian Processes

Gaussian Markov random fields

GMRF for spatial applications.

A Markovian model can be constructed for a spatial Gaussian processes
(Lindgren et al., 2011).
The spatial process is viewed as a stochastic partial differential equation,
and the solution is embedded in a triagularized graph over a spatial
domain.
More later (31 Jan).



Gaussian Processes

Regression Model

Regression for spatial datasets

Applications with trends and residual spatial variation.



Gaussian Processes

Regression Model

Spatial Gaussian regression model

Model: Y (s) = X (s)β + w(s) + ε(s).

1. Y (s) response variable at location /location-time position s.

2. β regression effects. X (s) covariates at s.

3. w(s) structured (space-time correlated) Gaussian process.

4. ε(s) unstructured (independent) Gaussian measurement noise.



Gaussian Processes

Regression Model

Gaussian model

Model: Y (s) = X (s)β + w(s) + ε(s).
Data at n locations: Y = (Y (s1), . . . ,Y (sn))′.
Main goals are:

I Parameter estimation

I Prediction



Gaussian Processes

Regression Model

Gaussian model

Likelihood for parameter estimation:

l(Y ;β,θ) = −1

2
log |C | − 1

2
(Y − Xβ)′C−1(Y − Xβ)

C (θ) = C = Σ + τ 2I n
Var(w) = Σ, Var(ε(si )) = τ 2 for all i .
θ include parameters of the covariance model.



Gaussian Processes

Method

Maximum likelihood

MLE:
(θ̂, β̂) = argmaxθ,β{l(Y ;β,θ)}.



Gaussian Processes

Method

Analytical derivatives

Formulas for matrix derivatives.

Q(θ) = C−1

β̂ = [X ′QX ]−1X ′QY ,

Z = Y − X β̂

d log |C |
dθr

= trace(Q
dC
dθr

)

dZ ′QZ
dθr

= −Z ′Q
dC
dθr

QZ .



Gaussian Processes

Method

Score and Hessian for θ

dl

dθr
= −1

2
trace(Q

dC
dθr

) +
1

2
Z ′Q

dC
dθr

QZ ,

E

(
d2l

dθrdθs

)
= −1

2
trace(Q

dC
dθs

Q
dC
dθr

).



Gaussian Processes

Method

Updates for each iteration

Q = Q(θp)

β̂p = [X ′QX ]−1X ′QY ,

θ̂p+1 = θ̂p − E

(
d2l(Y ; β̂p, θ̂p)

dθ2

)−1
dl(Y ; β̂p, θ̂p)

dθ
,

Iterative scheme usually starts from preliminary guess, obatined via
summary statistics.



Gaussian Processes

Method

Illustration maximization

Exponential covariance with nugget effect. θ = (θ1, θ2, θ3)′: log
precision, logistic range, log nugget precision.



Gaussian Processes

Method

Asymptotic properties

θ̂ ≈ N(θ,G−1).

G = G (θ̂) = −E
(
d2l

dθ2

)
.



Gaussian Processes

Prediction

Prediction from joint Gaussian formulation

Prediction

Ŷ0 = E (Y0|Y ) = X 0β̂ + C 0,.C−1(Y − X β̂).

C 0,. is size 1× n vector of cross-covariances between prediction site s0

and data sites.
Prediction variance

Var(Y0|Y ) = C0 − C 0,.C−1C ′0,..



Gaussian Processes

Numerical examples

Synthetic data

Consider unit square. Create grid of 252 = 625 locations. Use 49 data
randomly assigned, or along center line (two designs).

Covariance C (h) = τ 2I (h = 0) + σ2(1 + φh) exp(−φh), h = |s i − s j |.
θ include transformations of: σ, τ and φ.



Gaussian Processes

Numerical examples

Likelihood optimization

True parameters β = (−2, 3, 1), θ = (0.25, 9, 0.0025).
Random design:
β = [−2(0.486), 3.43(0.552), 0.812(0.538)]
θ = [ 0.298(0.118), 7.89(1.98), 0.00563(0.00679)]
Center design:
β̂ = [−2.06(0.576), 3.4(0.733), 0.353(0.733)]
θ̂ = [0.255(0.141), 7.19(1.97), 0.00283(0.00128)]



Gaussian Processes

Numerical examples

Predictions
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Numerical examples

Project on spatial Gaussian regression model next week



Gaussian Processes

Numerical examples

Mining example

Data giving oxide grade information at n = 1600 locations.

Easting

N
o

rt
h

in
g

500 m Prediction line

B

A

Use spatial statistics to predict oxide grade. Question: Will mining be
profitable? Should one gather more data before making mining decision?
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Numerical examples

Mining example

Model: Y (s) = X (s)β + w(s) + ε(s).
Data at n borehole locations used to fit model parameters by MLE.
Starting values from variogram (related to sample covariance).
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Gaussian Processes

Numerical examples

Mining example

Current prediction
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Gaussian Processes

Numerical examples

Mining example
Develop or not? Decision is done using expected profits.
Value based on current data:

PV = max(py , 0), py = r tµ|y − k t1,

Will more data influence the mining decision? Expected value with more
data:

PoV =

∫
yn

max(py ,yn , 0)π(yn|y)dyn, py ,yn = r tµ|y ,yn − k t1,

Is more data valuable. Compute the value of information (VOI):

VOI = PoV− PV.

If VOI exceeds the cost of data, it is worthwhile gathering this
information.

(Computations partly analytical, similar to EI.)
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Numerical examples

Mining example

Use this to compare two data types in planned boreholes:

I XRF : scanning in a lab (expensive, accurate).

I XMET : handheld device for grade scanning at the mining site
(inexpensive, inaccurate).
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Numerical examples

Mining example
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Numerical examples

Schedule

I 17 Jan: Gaussian processes

I 24 Jan: Hands-on project on Gaussian processes

I 31 Jan: Latent Gaussian models and INLA.

I 7 Feb: Hands-on project on INLA

I 12-13 Feb: Template model builder. (Guest lecturer Hans J Skaug)



Gaussian Processes

Numerical examples

Schedule

Project (24 Jan) will include

I Expected improvement for function maximization.

I Parameter estimation in spatial regression model (forest example).
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