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Schedule

I 16 Jan: Gaussian processes (Jo Eidsvik)

I 23 Jan: Hands-on project on Gaussian processes (Team effort, work
in groups)

I 30 Jan: Latent Gaussian models and INLA (Jo Eidsvik)

I 6 Feb: Hands-on project on INLA (Team effort, work in groups)

I 12-13 Feb: Template model builder. (Guest lecturer Hans J Skaug)

I 20 Feb: Ensemble Kalman filter and related filters (Jo Eidsvik)

I 27 Feb: Ensemble Kalman filter and related filters (Henning Omre)

I 6 Mars: Discrete random processes (Håkon Tjelmeland)

I 13 Mars: No Lecture!

I 20 Mars: Discrete random processes (Håkon Tjelmeland)

I 10 April: Dim red?..

I
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Background - Bayesian updating

Bayes formula

p(x |y) =
p(x , y)

p(y)
=

p(x)p(y |x)∫
p(x)p(y |x)dx

p(x) is prior.
p(y |x) is likelihood.
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Background - Bayesian updating

Example of such a model

x ∼ N(µx ,Σx)

y |x ∼ N(Hx ,T ), y = Hx + ε, ε ∼ N(0,T )

p(x |y) is Gaussian with

E (x |y) = µx + ΣxH ′[HΣxH ′ + T ]−1(y −Hµx),

Var(x |y) = Σx −ΣxH ′[HΣxH ′ + T ]−1HΣx .

Mean is linear in conditioning variable.
Variance is not dependent on conditioning variable, only correlations and
variances.
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Filtering

Sequential Bayesian assimilation

p(x1), p(x t |x t−1), p(y t |x t), j = 2, 3, . . . ,T .
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Filtering

Dynamic model

Process model is described by:

p(x t |x t−1, . . . , x1) = p(x t |x t−1),

This could be a differential equation, or it could be a simple linear
process, or even a static process (x t = x t−1).

The data gathering process is described via the likelihood:

p(y t |x t , . . . , x1, y t−1, . . . , y 1) = p(y t |x t)

This could also be nonlinear, or it could represent picking a subset of
variables (with noise).
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Filtering

General formula

Filtering, solution:

p(x t |y 1, . . . , y t−1) ∝
∫

p(x t |x t−1)p(x t−1|y 1, . . . , y t−1)dx t−1.

p(x t |y 1, . . . , y t) =
p(x t |y 1, . . . , , y t−1)p(y t |x t)

p(y t |y 1, . . . , y t−1)

Note Markov assumption in process, and conditionally independent data.
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Filtering

Kalman filter
For a Gaussian prior x1 ∼ N(µ1,Σ1), linear Gaussian dynamic model
x t |x t−1 ∼ N(G tx t−1,Q), and linear Gaussian likelihood
y t |x t ∼ N(H tx t ,R), there exists an exact recursion for the filtering
distribution: p(x t |y 1, . . . , y t) = N(mt ,V t).

I Initialization:
µ1 = µ1, Σ1 = Σ1,

I Recursive updating for j = 1, . . . ,T :

S t = H tΣtH t
t + R,

K t = ΣtH t
tS
−1
t ,

mt = µt + K t(y t −H tµt),

V t = Σt −K tH tΣt .

Σj+1 = G tV tG t
t + Q

µj+1 = G tmt
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Filtering

Non-Gaussian or non-linear

In other situations there is usually no exact solution to the filtering
distribution. Approximations:

I Extended Kalman filter (EKF) : linearization

I Unscented Kalman filter (UKF) : design points and ’numerical’
integration

I Ensemble Kalman filter (EnKF) : Monte Carlo samples and linear
updates

I Particle filter (PF) : Simulation and likelihood weighting.
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Filtering

Algorithms

Summary of some filtering methods ; pros and cons.

Criterion EKF UKF EnKF PF

Analytic conditioning V V V
MC based V V
Non-linear w V V V
Scales with dim. V V
Reliable UQ w w
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Filtering

Ensemble Kalman filter (EnKF)

I Monte Carlo based data assimilation

I Assimilation based on linear update

(Evensen, 1994, Evensen, 2009).
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Filtering

EnKF

I Initial: Independent prior samples xb,a
0 ∼ p(x0), b = 1, . . . ,B.

I Iterate for samples b = 1, . . . ,B and time steps t = 1, . . . ,T :
Forecast variables (could be non-linear, black-box solver):

xb,f
t = g(xb,a

t−1; εbt ),

Forecast data (could be non-linear, black-box solver):

yb
t = h(xb,f

t ; δbt ),

Assimilate:
xb,a
t = xb,f

t + K̂ t(y t − yb
t ).

K̂ t = Σ̂xy ,tΣ̂
−1

y ,t .
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Filtering

EnKF update

xb,a
t = xb,f

t + Σ̂xy ,tΣ̂
−1

y ,t (y t − yb
t ).

This is a regression problem.

Σ̂y ,t =
1

B

B∑
b=1

(yb
t − ȳ t)(yb

t − ȳ t)
′, ȳ t =

1

B

B∑
b=1

yb
t

Σ̂xy ,t =
1

B

B∑
b=1

(xb,f
t − x̄ t)(yb

t − ȳ t)
′, x̄ t =

1

B

B∑
b=1

xb,f
t ,
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Univariate example

Univariate example - samples

xb ∼ p(x), yb = xb + N(0, 52)
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Univariate example

Univariate example - regression fit
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Univariate example

Univariate example - observation
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Univariate example

Univariate example - analysis or update step
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Univariate example

Univariate example - prior and posterior
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Project 1

Univariate - one-step problem

Implement the Ensemble Kalman filter (one time step only) on the
following model, and compare with the exact solution for p(x |y). Plot
solutions.

x ∼ N(0, 1), y = x2q+1 + N(0, 0.052)

Data is y = 2.

I Set q = 0. Study performance of the EnKF for different ensemble
sizes B = 20, 100.

I Study performance of the EnKF for different q = 1, 2, . . ..
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Project 1

EnKF, Gauss-linear likelihood

I Initial: Independent samples xb,a
0 ∼ p(x0), b = 1, . . . ,B.

I Iterate for samples b = 1, . . . ,B and time steps t = 1, . . . ,T :
Forecast variables (could be non-linear, black-box solver):

xb,f
t = g(xb,a

t−1; εbt ),

Linear likelihood:
yb
t = Hxb,f

t + N(0,T )

Assimilate :

xb,a
t = xb,f

t + Σ̂tH
′
(HΣ̂tH

′
+ T )−1(y t − yb

t ).
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Kalman gain estimation

Estimation of Σt

Standard approach:

Σ̂t =
1

B

B∑
b=1

(xb,f
t − x̄ t)(xb,f

t − x̄ t)
′, x̄ t =

1

B

B∑
b=1

xb,f
t

Gives less Monte Carlo error than straightforward estimator for Kalman
gain.
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Kalman gain estimation

Gaussian random field

Use B = 100 ensembles (realizations) to estimate the covariance matrix.
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Kalman gain estimation

Estimation of covariance matrix

There is lots of Monte Carlo error in the estimated covariance matrix and
Kalman gain. Numerous tricks try to resolve this: inflation, localization,
etc. Also, since the Kalman gain is estimated from data, there is coupling
over many time steps which gives challenges. Resampling from a
Gaussian approximation might solve this. (More details next week.).
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Autoregressive process example

Spatial AR(1) model

x0 ∼ N(0,Σ),

x t = ρx t−1 + N(0, (1− ρ2)Σ), t = 1, . . . ,T

y t = x t + N(0, τ 2I ), t = 1, . . . ,T

T = 10, 50× 50 grid.

EnKF is run with B = 5000 ensemble members.
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Autoregressive process example

Spatial AR(1): KF pred
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Autoregressive process example

Spatial AR(1): EnKF pred
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Autoregressive process example

Spatial AR(1): MSE and coverage

KF (o), EnKF (+).
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Autoregressive process example

Spatial AR(1): EnKF pred (B = 500)

(Average coverage for EnKF is 0.38 for nominal 0.90.)
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Project 2

Univariate - AR(1) time series

Implement the Ensemble Kalman filter on the following model, and
compare with the exact Kalman filter solution. Plot solutions (mean with
90 % prediction intervals). Study performance for B = 20, 100, 1000 in
the EnKF.

x1 ∼ N(0, 1),

xt = 0.9xt−1 + N(0, 1− 0.92), t = 2, . . . , 50

yt = xt + N(0, 0.22), t = 1, . . . , 50
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Summary

Main points

I Filtering methods, sequential data assimilation.

I EnKF is ensemble based, with linear update.

I EnKF has been successful in many applications, but often shows
underestimation of variability.

I EnKF is complicated in models with very nonlinear likelihoods.
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