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Schedule

I 16 Jan: Gaussian processes (Jo Eidsvik)

I 23 Jan: Hands-on project on Gaussian processes (Team effort,
work in groups)

I 30 Jan: Latent Gaussian models and INLA (Jo Eidsvik)

I 6 Feb: Hands-on project on INLA (Team effort, work in groups)

I 12-13 Feb: Template model builder. (Guest lecturer Hans J Skaug)

I To be decided...
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Project A: Bayesian optimization

Gaussian processes are commonly used in optimization of complex
functions.

Usually the function Y (t) is very expensive to evaluate.

Goal
t̂ = argmaxY (t)

Example: t is temperature, Y (t) is production quality. Which
temperature input gives highest quality?



Project: Gaussian Processes

Projects

Project A: Bayesian optimization

In this project the function is simply

Y (t) = 0.5 cos(15t) + 0.25 sin(20t)− 0.2 cos(10t)
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Project A: Bayesian optimization
A set is a grid from 0.00 to 1.00, with step size 0.01.
B set (0.094, 0.175, 0.261, 0.4520, 0.6460, 0.817), with measurements
(0.2002,−0.4868,−0.4038, 0.5716,−0.5928, 0.3904).

E (Y A|Y B) = µA + ΣA,BΣ−1B (Y B − µB),

Var(Y A|Y B) = ΣA −ΣA,BΣ−1B ΣB,A.

Model

µ(t) = −0.05, Σ(s, t) = (1 + 6|t − s|) exp(−6|t − s|).
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Expected improvement:

EI = E (max{0,Y (t)− Y ∗}|Y B)

= (µ̂(t)− Y ∗)Φ

[
µ̂(t)− Y ∗

σ̂(t)

]
+ σ̂(t)φ

[
µ̂(t)− Y ∗

σ̂(t)

]

Y ∗ = max Y B

µ̂(t) and σ̂(t) are posterior mean and standard deviation, given Y B .
Φ and φ is cdf and pdf of standard Gaussian distribution.
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Sequential optimization using expected improvement.
Repeat the following for some iterations:

I Use EI to find next best point, given current data.

I Evaluate next point.

I Augment B set with this observation.
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Project B: Spatial regression model

Model: Y (s) = X (s)β + w(s) + ε(s).

1. Y (s) response variable at location s = (s1, s2).

2. β regression effects. X (s) covariates at s.

3. w(s) structured (spatially correlated) Gaussian process.

4. ε(s) unstructured (independent) Gaussian measurement noise.
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Project B: Spatial regression model

True model:

I s is in the unit square.

I Y (s) = β + w(s) + N(0, τ 2), β = 1, τ 2 = 0.12.

I Exponential covariance: Cov(w(s),w(t)) = σ2 exp(−φ|s − t|),
σ2 = 12, φ = 6.

Goal is to estimate parameters β and θ = (σ2, φ, τ 2) from data at
n = 100 random locations: Y = (Y (s1), . . . ,Y (sn))′.
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MLE:
(θ̂, β̂) = argmaxθ,β{l(Y ;β,θ)}.

Distance matrix H of size 100× 100.

Z = (Y − 1
¯
β),Σ = σ2 exp(−φH),C = Σ + τ 2I ,Q = C−1.

dl

dθr
= −1

2
trace(Q

dC
dθr

) +
1

2
Z ′Q

dC
dθr

QZ ,

E

(
d2l

dθrdθs

)
= −1

2
trace(Q

dC
dθs

Q
dC
dθr

).

dC
dσ2

= exp(−φH),
dC
dφ

= −σ2H � exp(−φH),
dC
dτ 2

= I .
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Q = Q(θp)

β̂p = [X ′QX ]−1X ′QY ,

θ̂p+1 = θ̂p − E

(
d2l(Y ; β̂p, θ̂p)

dθ2

)−1
dl(Y ; β̂p, θ̂p)

dθ
,
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Iterative scheme can here start with true β, σ2, φ and τ 2.
Sample n = 100 random sites in the unit square. Form the distance
matrix, the covariance matrix, and its Cholesky factor based on the true
model.
Repeat the following for some Monte Carlo realizations:

I Draw a realization Y .

I Find MLE of the model parameters. Monitor convergence over
iterations p = 1, . . . , 10.

The estimates should be close to the true parameters, with some
variability over the realizations.
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