
Sequential optimization

Recursive optimization

I Viterbi algorithm

I Sequential optimization

I Dynamic time warping

All these are examples of dynamic programming (DP).
Approximate dynamic programming and reinforcement learning.



Sequential optimization

Viterbi

Recall Hidden Markov models

xi ∈ {0, . . . , k}, p(xi |xi−1, . . . , x0) = p(xi |xi−1),
p(yi |xi , . . . , x0, yi−1, . . . , y1) = p(yi |xi ).
Recursive forward summation.

p(xi |y1, . . . , yi−1) =
∑
xi−1

p(xi |xi−1)p(xi−1|y1, . . . , yi−1)

p(xi |y1, . . . , yi ) =
p(xi |y1, . . . , yi−1)p(yi |xi )∑
xi
p(xi |y1, . . . , yi−1)p(yi |xi )



Sequential optimization

Viterbi

Optimal sequence

[x̂1, . . . , x̂n] = argmax{p(x1, . . . , xn|y1, . . . , yn)}

Recursive forward maximization.

δk(1) = p(x1 = k)p(y1|x1 = k)

δl(i + 1) = maxk{∆k,l(i , i + 1)},

∆k,l(i , i + 1) = δk(i)p(xi+1 = l |xi = k)p(yi+1|xi+1 = l)

Optimal sequence by backtracking - ’path’ selection

[x̂n] = argmaxl{δl(n)}

[x̂i |x̂i+1, . . . , x̂n] = argmaxk{∆k,x̂i+1(i , i + 1)}



Sequential optimization

Viterbi

Optimal sequence vs marginal probabilities

Joint maximum:

[x̂1, . . . , x̂n] = argmax{p(x1, . . . , xn|y1, . . . , yn)}

Marginal maximum:

[x̃i ] = argmax{p(xi |y1, . . . , yn)}, i = 1, . . . , n.

Joint maximization is possible for this Markov model because of pairwise
coupling.



Sequential optimization

Sequential decisions

Sequential decisions

1. First, make best decision among many.

2. See outcome of selection.

3. Then, depending on the outcome xi ∈ {1, . . . , k}, make next best
decision.

The sequential selections depends on the outcome of the previously
selected nodes. Conditioning influences the conditional probabilities for
models with statistical dependence.



Sequential optimization

Sequential decisions

Selection of drilling locations
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Figure: Network of 25 drilling prospects, identified with the nodes from 1 to 25,
where we can possibly drill.



Sequential optimization

Sequential decisions

Evidence propagation
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Figure: Difference between the marginal probability of the state oil and the
probability of the state oil after observing a dry (left) or oil (right) evidence in
prospect 14 (top) or 10 (bottom).



Sequential optimization

Sequential decisions

Sequential decisions

Value is defined by nested equations:

v = max
i∈N


k∑

j=1

p(xi = j)

[
r ji + δ max

s∈N−1

{
k∑

l=1

p(xs = l |xi = j)(r ls + . . .), 0

}]
, 0

 ,

I Reward r ji .

I Discounting factor δ.

I Sequence of maximizations and expectations.



Sequential optimization

Sequential decisions

Way of life

1. First, decide which node, if any, to exploit first.

2. Then, depending on the outcome xi ∈ {1, . . . , k}, which node to
exploit next, if any, and so on.

The sequential selections depends on the outcome of the previously
selected nodes. Conditioning influences the conditional probabilities for
models with statistical dependence. Greedy exploitation often yields
poor exploration. Need both!

DP solves the optimization problem by working backwards:

1. First, decide whether to drill the last prospect, conditional on the
first N − 1 observables.

2. Then, decide which prospect to drill if there are two nodes left, and
so on, until the initial empty set.

Combinatorial complexity - approximations required.



Sequential optimization

Sequential decisions

Common approximation methods : heuristics

Naive strategy:

1. First, decide best from marginals.

2. Then, decide second best from marginal, third best marginal, if
positive rewards, and so on.

3. Value approximation by naive selection:

vN =
N∑
i=1

max


k∑

j=1

r ji p(xi = j), 0

 ,



Sequential optimization

Sequential decisions

Common approximation methods : heuristics
Myopic strategy:

1. First, decide best from marginal. i(1).

2. Observe, xi(1) = j , and condition based on data.

3. Then, decide second i(2j) from conditional distribution, observe xi(2j) ,
condition, and continue if positive rewards, and so on.

4. Value approximation by myopic selection:

v1 = max


k∑

j=1

r ji p(xi(1) = j), 0


v2 =

k∑
j=1

(
max

{
k∑

l=1

r lxi(2j)
p(xi(2j) = l |xi(1) = j), 0

})
p(xi(1) = j)

vM =
N∑
i=1

δi−1vi ,



Sequential optimization

Sequential decisions

Other heuristics

I Look-ahead stategies account for the next stages, but not all future
rewards.

I Rolling-horizon look-ahead startegies, conditioning every step, then
look-ahead.

I In large problems value computation is approximated over Monte
Carlo samples, playing the game of the strategy.



Sequential optimization

Sequential decisions

Comparison of some heuristics
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Figure: BN used for small case. N=6.



Sequential optimization

Sequential decisions

Comparison of some heuristics

Table: Results of the sequential exploration program different heuristics.

Naive Myopic Exact Dpt1 Dpt2 Dpt3 Dpt4

i(1) 3 3 6 6 6 6 6

i(2)|xi(1) = dry 4 Q 3 3 3 3 3

i(2)|xi(1) = gas 4 2 5 2 5 5 5

i(2)|xi(1) = oil 4 2 5 2 4 4 5

i(3)|xi(1) = dry , xi(2) = dry 6 Q Q Q Q Q Q

i(3)|xi(1) = dry , xi(2) = gas 6 Q 2 2 2 2 2

i(3)|xi(1) = dry , xi(2) = oil 6 Q 2 2 2 2 2

i(3)|xi(1) = gas, xi(2) = dry 6 4 4 5 4 4 4

i(3)|xi(1) = gas, xi(2) = gas 6 4 4 5 4 4 4

i(3)|xi(1) = gas, xi(2) = oil 6 4 4 5 4 4 4

i(3)|xi(1) = oil , xi(2) = dry 6 4 4 5 3 5 4

i(3)|xi(1) = oil , xi(2) = gas 6 4 4 4 2 2 4

i(3)|xi(1) = oil , xi(2) = oil 6 4 4 4 2 2 4

Final Value 0.63 1.67 4.960 3.85 4.84 4.93 4.957
Time 0.24 sec 0.24 sec 85.6 sec 0.43 sec 3.52 sec 16.11 sec 48.22 sec



Sequential optimization

Sequential decisions

Simulation regression approaches

Training:

1. Run many different strategies

2. Note results (rewards) along the way, for each strategy.

3. Fit a regression model for rewards based on this training data.

Regression:

1. First, decide best from regression function.

2. Observe, and condition based on data.

3. Then, update with observations, and continue with next best
positive rewards, according to the regression model, and so on.

Reinforcement learning using neural networks for training are very
popular at the moment. (AlphaGo).



Sequential optimization

DTW

Gas pipe data

Figure: Gas-pipe ethane measured in Norway, and in Germany.

Must align time series.



Sequential optimization

DTW

Dynamic time warping (DTW)

Figure: Illustration of warping function

Used a lot in speech recognition.



Sequential optimization

DTW

Optimization problem

Time series xi , i = 1, . . . , n, yj , j = 1, . . . ,m.
Define path p : {i , j}, i = 1, . . . , n.

p̂ = argmax {Dp(x , y)}

D(p) =
n∑

i=1

(xi − yp(i))
2.



Sequential optimization

DTW

Distances

Constraints on path p.
Cumulative distances

D(i , j) = min{D(i − 1, j − 1),D(i , j − 1),D(i − 1, j)}+ (xi − yj)
2

D(i , j) computed in cumulative manner, moving forward, from the
nearest neighbors.
d and D form two alignment matrices over paths (i , p(i)).



Sequential optimization

DTW

Aligning sequences

Figure: Alignment matrix for ethane time series data, and optimal warping path.

Optimal (global) path is solved by backward selection in the cumulative
distance matrix:

p̂ = argmax {Dp(x , y)}

Full scale optimization can be slow, windowing, bounds, etc. can speed
up algorithm.



Sequential optimization

DTW

Project : Viterbi and DTW

I Viterbi for HMM: Reconsider the HMM from the former project
(Normalizing constant), with the given data, and fixed
hyper-parameters. Run a Viterbi algorithm to find the joint optimal
solution of states xi ∈ {0, 1}, i = 1, . . . , n. Compare with marginal
maximum solution.

I DTW for time series: Simulate a mean zero, unit variance
Gaussian process x1, . . . , x500 with correlation

Corr(xt , xs) = exp(− 3|t−s|
200 ). Define a monotone warping path p(i),

with slow fluctuation around the diagonal and p(1) = 1,
p(500) = 500. Simulate a warped signal yj = xp(i) + N(0, 0.22).
Compute and visualize the cumulative distance matrix and derive the
optimal path of the alignment. Compare with the specified path.
See also code: matlab: ’dtw()’, R: install.packages(”dtw”)
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